spaces
Browse files
app.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import logging
|
2 |
import gradio as gr
|
3 |
import os
|
@@ -19,7 +20,6 @@ import tempfile
|
|
19 |
import shutil
|
20 |
from Bio import PDB
|
21 |
from gradio_molecule3d import Molecule3D
|
22 |
-
#import spaces # Import spaces for ZeroGPU compatibility
|
23 |
|
24 |
EXAMPLE_PATH = './examples/example.json'
|
25 |
example_json=[{'sequences': [{'proteinChain': {'sequence': 'MAEVIRSSAFWRSFPIFEEFDSETLCELSGIASYRKWSAGTVIFQRGDQGDYMIVVVSGRIKLSLFTPQGRELMLRQHEAGALFGEMALLDGQPRSADATAVTAAEGYVIGKKDFLALITQRPKTAEAVIRFLCAQLRDTTDRLETIALYDLNARVARFFLATLRQIHGSEMPQSANLRLTLSQTDIASILGASRPKVNRAILSLEESGAIKRADGIICCNVGRLLSIADPEEDLEHHHHHHHH', 'count': 2}}, {'dnaSequence': {'sequence': 'CTAGGTAACATTACTCGCG', 'count': 2}}, {'dnaSequence': {'sequence': 'GCGAGTAATGTTAC', 'count': 2}}, {'ligand': {'ligand': 'CCD_PCG', 'count': 2}}], 'name': '7pzb_need_search_msa'}]
|
@@ -210,7 +210,7 @@ def create_protenix_json(input_data: Dict) -> List[Dict]:
|
|
210 |
|
211 |
|
212 |
#@torch.inference_mode()
|
213 |
-
|
214 |
def predict_structure(input_collector: dict):
|
215 |
"""Handle both input types"""
|
216 |
os.makedirs("./output", exist_ok=True)
|
@@ -451,7 +451,7 @@ with gr.Blocks(title="FoldMark", css=custom_css) as demo:
|
|
451 |
outputs=[view3d, confidence_plot_image, cif_file]
|
452 |
)
|
453 |
|
454 |
-
|
455 |
def is_watermarked(file):
|
456 |
# Generate a unique subdirectory and filename
|
457 |
unique_id = str(uuid.uuid4().hex[:8])
|
|
|
1 |
+
import spaces
|
2 |
import logging
|
3 |
import gradio as gr
|
4 |
import os
|
|
|
20 |
import shutil
|
21 |
from Bio import PDB
|
22 |
from gradio_molecule3d import Molecule3D
|
|
|
23 |
|
24 |
EXAMPLE_PATH = './examples/example.json'
|
25 |
example_json=[{'sequences': [{'proteinChain': {'sequence': 'MAEVIRSSAFWRSFPIFEEFDSETLCELSGIASYRKWSAGTVIFQRGDQGDYMIVVVSGRIKLSLFTPQGRELMLRQHEAGALFGEMALLDGQPRSADATAVTAAEGYVIGKKDFLALITQRPKTAEAVIRFLCAQLRDTTDRLETIALYDLNARVARFFLATLRQIHGSEMPQSANLRLTLSQTDIASILGASRPKVNRAILSLEESGAIKRADGIICCNVGRLLSIADPEEDLEHHHHHHHH', 'count': 2}}, {'dnaSequence': {'sequence': 'CTAGGTAACATTACTCGCG', 'count': 2}}, {'dnaSequence': {'sequence': 'GCGAGTAATGTTAC', 'count': 2}}, {'ligand': {'ligand': 'CCD_PCG', 'count': 2}}], 'name': '7pzb_need_search_msa'}]
|
|
|
210 |
|
211 |
|
212 |
#@torch.inference_mode()
|
213 |
+
@spaces.GPU(duration=120) # Specify a duration to avoid timeout
|
214 |
def predict_structure(input_collector: dict):
|
215 |
"""Handle both input types"""
|
216 |
os.makedirs("./output", exist_ok=True)
|
|
|
451 |
outputs=[view3d, confidence_plot_image, cif_file]
|
452 |
)
|
453 |
|
454 |
+
@spaces.GPU
|
455 |
def is_watermarked(file):
|
456 |
# Generate a unique subdirectory and filename
|
457 |
unique_id = str(uuid.uuid4().hex[:8])
|