### Using Local Colabfold_search to Generate Protenix-Compatible MSA Colabfold provides an easy-to-use and efficient MSA search pipeline that's ideal for generating MSAs during inference. Unfortunately, this pipeline cannot fully match Protenix's MSA search process designed for training, as the current `colabfold_search` omits species information in the MSA, preventing correct pairing by Protenix's data pipeline. To address this issue, we provide the `scripts/colabfold_msa.py` script, which post-processes `colabfold_search` results by adding pseudo taxonomy IDs to paired MSAs to match Protenix's data pipeline. Here's an example: ```bash python3 scripts/colabfold_msa.py examples/dimer.fasta dimer_colabfold_msa --db1 uniref30_2103_db --db3 colabfold_envdb_202108_db --mmseqs_path ``` #### Configuring Colabfold_search Installation of colabfold and mmseqs2 is required. colabfold can be installed with: `pip install colabfold[alphafold]`. Build MMseqs2 from source: ```bash wget https://github.com/soedinglab/MMseqs2/archive/refs/tags/16-747c6.tar.gz tar xzf 16-747c6.tar.gz cd MMseqs2-16-747c6/ mkdir build && cd build cmake -DCMAKE_BUILD_TYPE=RELEASE -DCMAKE_INSTALL_PREFIX=. .. make -j8 make install ``` Download ColabFold database: ```bash git clone https://github.com/sokrypton/ColabFold.git cd ColabFold # Configure database: MMSEQS_NO_INDEX=1 ./setup_databases.sh ```