# Copyright 2024 ByteDance and/or its affiliates. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import functools import logging import pickle from collections import defaultdict from pathlib import Path from typing import Any, Optional, Union import biotite import biotite.structure as struc import biotite.structure.io.pdbx as pdbx import numpy as np from biotite.structure import AtomArray from rdkit import Chem from configs.configs_data import data_configs from protenix.data.substructure_perms import get_substructure_perms logger = logging.getLogger(__name__) COMPONENTS_FILE = data_configs["ccd_components_file"] RKDIT_MOL_PKL = Path(data_configs["ccd_components_rdkit_mol_file"]) @functools.lru_cache def biotite_load_ccd_cif() -> pdbx.CIFFile: """biotite load CCD components file Returns: pdbx.CIFFile: ccd components file """ return pdbx.CIFFile.read(COMPONENTS_FILE) def _map_central_to_leaving_groups(component) -> Optional[dict[str, list[list[str]]]]: """map each central atom (bonded atom) index to leaving atom groups in component (atom_array). Returns: dict[str, list[list[str]]]: central atom name to leaving atom groups (atom names). """ comp = component.copy() # Eg: ions if comp.bonds is None: return {} central_to_leaving_groups = defaultdict(list) for c_idx in np.flatnonzero(~comp.leaving_atom_flag): bonds, _ = comp.bonds.get_bonds(c_idx) for l_idx in bonds: if comp.leaving_atom_flag[l_idx]: comp.bonds.remove_bond(c_idx, l_idx) group_idx = struc.find_connected(comp.bonds, l_idx) if not np.all(comp.leaving_atom_flag[group_idx]): return None central_to_leaving_groups[comp.atom_name[c_idx]].append( comp.atom_name[group_idx].tolist() ) return central_to_leaving_groups @functools.lru_cache def get_component_atom_array( ccd_code: str, keep_leaving_atoms: bool = False, keep_hydrogens=False ) -> AtomArray: """get component atom array Args: ccd_code (str): ccd code keep_leaving_atoms (bool, optional): keep leaving atoms. Defaults to False. keep_hydrogens (bool, optional): keep hydrogens. Defaults to False. Returns: AtomArray: Biotite AtomArray of CCD component with additional attribute: leaving_atom_flag (bool) """ ccd_cif = biotite_load_ccd_cif() if ccd_code not in ccd_cif: logger.warning(f"Warning: get_component_atom_array() can not parse {ccd_code}") return None try: comp = pdbx.get_component(ccd_cif, data_block=ccd_code, use_ideal_coord=True) except biotite.InvalidFileError as e: # Eg: UNL without atom. logger.warning( f"Warning: get_component_atom_array() can not parse {ccd_code} for {e}" ) return None atom_category = ccd_cif[ccd_code]["chem_comp_atom"] leaving_atom_flag = atom_category["pdbx_leaving_atom_flag"].as_array() comp.set_annotation("leaving_atom_flag", leaving_atom_flag == "Y") for atom_id in ["alt_atom_id", "pdbx_component_atom_id"]: comp.set_annotation(atom_id, atom_category[atom_id].as_array()) if not keep_leaving_atoms: comp = comp[~comp.leaving_atom_flag] if not keep_hydrogens: # EG: ND4 comp = comp[~np.isin(comp.element, ["H", "D"])] # Map central atom index to leaving group (atom_indices) in component (atom_array). comp.central_to_leaving_groups = _map_central_to_leaving_groups(comp) if comp.central_to_leaving_groups is None: logger.warning( f"Warning: ccd {ccd_code} has leaving atom group bond to more than one central atom, central_to_leaving_groups is None." ) return comp @functools.lru_cache(maxsize=None) def get_one_letter_code(ccd_code: str) -> Union[str, None]: """get one_letter_code from CCD components file. normal return is one letter: ALA --> A, DT --> T unknown protein: X unknown DNA or RNA: N other unknown: None some ccd_code will return more than one letter: eg: XXY --> THG Args: ccd_code (str): _description_ Returns: str: one letter code """ ccd_cif = biotite_load_ccd_cif() if ccd_code not in ccd_cif: return None one = ccd_cif[ccd_code]["chem_comp"]["one_letter_code"].as_item() if one == "?": return None else: return one @functools.lru_cache(maxsize=None) def get_mol_type(ccd_code: str) -> str: """get mol_type from CCD components file. based on _chem_comp.type http://mmcif.rcsb.org/dictionaries/mmcif_pdbx_v50.dic/Items/_chem_comp.type.html not use _chem_comp.pdbx_type, because it is not consistent with _chem_comp.type e.g. ccd 000 --> _chem_comp.type="NON-POLYMER" _chem_comp.pdbx_type="ATOMP" https://mmcif.wwpdb.org/dictionaries/mmcif_pdbx_v5_next.dic/Items/_struct_asym.pdbx_type.html Args: ccd_code (str): ccd code Returns: str: mol_type, one of {"protein", "rna", "dna", "ligand"} """ ccd_cif = biotite_load_ccd_cif() if ccd_code not in ccd_cif: return "ligand" link_type = ccd_cif[ccd_code]["chem_comp"]["type"].as_item().upper() if "PEPTIDE" in link_type and link_type != "PEPTIDE-LIKE": return "protein" if "DNA" in link_type: return "dna" if "RNA" in link_type: return "rna" return "ligand" def get_all_ccd_code() -> list: """get all ccd code from components file""" ccd_cif = biotite_load_ccd_cif() return list(ccd_cif.keys()) _ccd_rdkit_mols: dict[str, Chem.Mol] = {} def get_component_rdkit_mol(ccd_code: str) -> Union[Chem.Mol, None]: """get rdkit mol by PDBeCCDUtils https://github.com/PDBeurope/ccdutils preprocessing all ccd components in _components_file at first time run. Args: ccd_code (str): ccd code Returns rdkit.Chem.Mol: rdkit mol with ref coord """ global _ccd_rdkit_mols # _ccd_rdkit_mols is not empty if _ccd_rdkit_mols: return _ccd_rdkit_mols.get(ccd_code, None) rdkit_mol_pkl = RKDIT_MOL_PKL if rdkit_mol_pkl.exists(): with open(rdkit_mol_pkl, "rb") as f: _ccd_rdkit_mols = pickle.load(f) return _ccd_rdkit_mols.get(ccd_code, None) else: raise FileNotFoundError( f"CCD components file {rdkit_mol_pkl} not found, please download it to your DATA_ROOT_DIR before running." "See https://github.com/bytedance/Protenix" ) @functools.lru_cache def get_ccd_ref_info(ccd_code: str, return_perm: bool = True) -> dict[str, Any]: """ Ref: AlphaFold3 SI Chapter 2.8 Reference features. Features derived from a residue, nucleotide or ligand’s reference conformer. Given an input CCD code or SMILES string, the conformer is typically generated with RDKit v.2023_03_3 [25] using ETKDGv3 [26]. On error, we fall back to using the CCD ideal coordinates, or finally the representative coordinates if they are from before our training date cut-off (2021-09-30 unless otherwise stated). At the end, any atom coordinates still missing are set to zeros. Get reference atom mapping and coordinates. Args: name (str): CCD name return_perm (bool): return atom permutations. Returns: Dict: ccd: ccd code atom_map: atom name to atom index coord: atom coordinates charge: atom formal charge perm: atom permutation """ mol = get_component_rdkit_mol(ccd_code) if mol is None: return {} if mol.GetNumAtoms() == 0: # eg: "UNL" logger.warning( f"Warning: mol {ccd_code} from get_component_rdkit_mol() has no atoms," "get_ccd_ref_info() return empty dict" ) return {} conf = mol.GetConformer(mol.ref_conf_id) coord = conf.GetPositions() charge = np.array([atom.GetFormalCharge() for atom in mol.GetAtoms()]) results = { "ccd": ccd_code, # str "atom_map": mol.atom_map, # dict[str,int]: atom name to atom index "coord": coord, # np.ndarray[float]: atom coordinates, shape:(n_atom,3) "mask": mol.ref_mask, # np.ndarray[bool]: atom mask, shape:(n_atom,) "charge": charge, # np.ndarray[int]: atom formal charge, shape:(n_atom,) } if return_perm: try: Chem.SanitizeMol(mol) perm = get_substructure_perms(mol, MaxMatches=1000) except: # Sanitize failed, permutation is unavailable perm = np.array( [ [ i for i, atom in enumerate(mol.GetAtoms()) if atom.GetAtomicNum() != 1 ] ] ) # np.ndarray[int]: atom permutation, shape:(n_atom_wo_h, n_perm) results["perm"] = perm.T return results # Modified from biotite to use consistent ccd components file def _connect_inter_residue( atoms: AtomArray, residue_starts: np.ndarray ) -> struc.BondList: """ Create a :class:`BondList` containing the bonds between adjacent amino acid or nucleotide residues. Parameters ---------- atoms : AtomArray or AtomArrayStack The structure to create the :class:`BondList` for. residue_starts : ndarray, dtype=int Return value of ``get_residue_starts(atoms, add_exclusive_stop=True)``. Returns ------- BondList A bond list containing all inter residue bonds. """ bonds = [] atom_names = atoms.atom_name res_names = atoms.res_name res_ids = atoms.res_id chain_ids = atoms.chain_id # Iterate over all starts excluding: # - the last residue and # - exclusive end index of 'atoms' for i in range(len(residue_starts) - 2): curr_start_i = residue_starts[i] next_start_i = residue_starts[i + 1] after_next_start_i = residue_starts[i + 2] # Check if the current and next residue is in the same chain if chain_ids[next_start_i] != chain_ids[curr_start_i]: continue # Check if the current and next residue # have consecutive residue IDs # (Same residue ID is also possible if insertion code is used) if res_ids[next_start_i] - res_ids[curr_start_i] > 1: continue # Get link type for this residue from RCSB components.cif curr_link = get_mol_type(res_names[curr_start_i]) next_link = get_mol_type(res_names[next_start_i]) if curr_link == "protein" and next_link in "protein": curr_connect_atom_name = "C" next_connect_atom_name = "N" elif curr_link in ["dna", "rna"] and next_link in ["dna", "rna"]: curr_connect_atom_name = "O3'" next_connect_atom_name = "P" else: # Create no bond if the connection types of consecutive # residues are not compatible continue # Index in atom array for atom name in current residue # Addition of 'curr_start_i' is necessary, as only a slice of # 'atom_names' is taken, beginning at 'curr_start_i' curr_connect_indices = np.where( atom_names[curr_start_i:next_start_i] == curr_connect_atom_name )[0] curr_connect_indices += curr_start_i # Index in atom array for atom name in next residue next_connect_indices = np.where( atom_names[next_start_i:after_next_start_i] == next_connect_atom_name )[0] next_connect_indices += next_start_i if len(curr_connect_indices) == 0 or len(next_connect_indices) == 0: # The connector atoms are not found in the adjacent residues # -> skip this bond continue bonds.append( (curr_connect_indices[0], next_connect_indices[0], struc.BondType.SINGLE) ) return struc.BondList(atoms.array_length(), np.array(bonds, dtype=np.uint32)) def add_inter_residue_bonds( atom_array: AtomArray, exclude_struct_conn_pairs: bool = False, remove_far_inter_chain_pairs: bool = False, ) -> AtomArray: """ add polymer bonds (C-N or O3'-P) between adjacent residues based on auth_seq_id. exclude_struct_conn_pairs: if True, do not add bond between adjacent residues already has non-standard polymer bonds on atom C or N or O3' or P. remove_far_inter_chain_pairs: if True, remove inter chain (based on label_asym_id) bonds that are far away from each other. returns: AtomArray: Biotite AtomArray merged inter residue bonds into atom_array.bonds """ res_starts = struc.get_residue_starts(atom_array, add_exclusive_stop=True) inter_bonds = _connect_inter_residue(atom_array, res_starts) if atom_array.bonds is None: atom_array.bonds = inter_bonds return atom_array select_mask = np.ones(len(inter_bonds._bonds), dtype=bool) if exclude_struct_conn_pairs: for b_idx, (atom_i, atom_j, b_type) in enumerate(inter_bonds._bonds): atom_k = atom_i if atom_array.atom_name[atom_i] in ("N", "O3'") else atom_j bonds, types = atom_array.bonds.get_bonds(atom_k) if len(bonds) == 0: continue for b in bonds: if ( # adjacent residues abs((res_starts <= b).sum() - (res_starts <= atom_k).sum()) == 1 and atom_array.chain_id[b] == atom_array.chain_id[atom_k] and atom_array.atom_name[b] not in ("C", "P") ): select_mask[b_idx] = False break if remove_far_inter_chain_pairs: if not hasattr(atom_array, "label_asym_id"): logging.warning( "label_asym_id not found, far inter chain bonds will not be removed" ) for b_idx, (atom_i, atom_j, b_type) in enumerate(inter_bonds._bonds): if atom_array.label_asym_id[atom_i] != atom_array.label_asym_id[atom_j]: coord_i = atom_array.coord[atom_i] coord_j = atom_array.coord[atom_j] if np.linalg.norm(coord_i - coord_j) > 2.5: select_mask[b_idx] = False # filter out removed_inter_bonds from atom_array.bonds remove_bonds = inter_bonds._bonds[~select_mask] remove_mask = np.isin(atom_array.bonds._bonds[:, 0], remove_bonds[:, 0]) & np.isin( atom_array.bonds._bonds[:, 1], remove_bonds[:, 1] ) atom_array.bonds._bonds = atom_array.bonds._bonds[~remove_mask] # merged normal inter_bonds into atom_array.bonds inter_bonds._bonds = inter_bonds._bonds[select_mask] atom_array.bonds = atom_array.bonds.merge(inter_bonds) return atom_array def res_names_to_sequence(res_names: list[str]) -> str: """convert res_names to sequences {chain_id: canonical_sequence} based on CCD Return str: canonical_sequence """ seq = "" for res_name in res_names: one = get_one_letter_code(res_name) one = "X" if one is None else one one = "X" if len(one) > 1 else one seq += one return seq