# Copyright 2024 ByteDance and/or its affiliates. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import shutil from abc import ABC, abstractmethod from collections import defaultdict from copy import deepcopy from os.path import exists as opexists from os.path import join as opjoin from typing import Any, Mapping, Optional, Sequence, Union import numpy as np import torch from biotite.structure import AtomArray from protenix.data.constants import STD_RESIDUES, rna_order_with_x from protenix.data.msa_utils import ( PROT_TYPE_NAME, FeatureDict, add_assembly_features, clip_msa, convert_monomer_features, get_identifier_func, load_and_process_msa, make_sequence_features, merge_features_from_prot_rna, msa_parallel, pair_and_merge, rna_merge, ) from protenix.data.tokenizer import TokenArray from protenix.utils.logger import get_logger logger = get_logger(__name__) SEQ_LIMITS = { "uniref100": -1, "mmseqs_other": -1, "uniclust30": -1, "rfam": 10000, "rnacentral": 10000, "nucleotide": 10000, } MSA_MAX_SIZE = 16384 class BaseMSAFeaturizer(ABC): def __init__( self, indexing_method: str = "sequence", merge_method: str = "dense_max", seq_limits: Optional[dict[str, int]] = {}, max_size: int = 16384, **kwargs, ): """ Initializes the BaseMSAFeaturizer with the specified parameters. Args: indexing_method (str): The method used for indexing the MSA. Defaults to "sequence". merge_method (str): The method used for merging MSA features. Defaults to "dense_max". seq_limits (Optional[dict[str, int]]): Dictionary specifying sequence limits for different databases. Defaults to an empty dictionary. max_size (int): The maximum size of the MSA. Defaults to 16384. **kwargs: Additional keyword arguments. Raises: AssertionError: If the provided `merge_method` or `indexing_method` is not valid. """ assert merge_method in ["dense_max", "dense_min", "sparse"] assert indexing_method in [ "sequence", "pdb_id", "pdb_id_entity_id", ], f"Unknown indexing method: {indexing_method}" self.indexing_method = indexing_method self.merge_method = merge_method self.seq_limits = seq_limits self.max_size = max_size @abstractmethod def get_msa_path(self): pass @abstractmethod def process_single_sequence(self): pass def get_entity_ids( self, bioassembly_dict: Mapping[str, Any], msa_entity_type: str = "prot" ) -> set[str]: """ Extracts the entity IDs that match the specified MSA entity type from the bioassembly dictionary. Args: bioassembly_dict (Mapping[str, Any]): The bioassembly dictionary containing entity information. msa_entity_type (str): The type of MSA entity to filter by. Defaults to "prot". Returns: set[str]: A set of entity IDs that match the specified MSA entity type. Raises: AssertionError: If the provided `msa_entity_type` is not "prot" or "rna". """ assert msa_entity_type in ["prot", "rna"], "only protein and rna might have msa" poly_type_mapping = { "prot": "polypeptide", "rna": "polyribonucleotide", "dna": "polydeoxyribonucleotide", } entity_poly_type = bioassembly_dict["entity_poly_type"] entity_ids: set[str] = { entity_id for entity_id, poly_type in entity_poly_type.items() if poly_type_mapping[msa_entity_type] in poly_type } return entity_ids def get_selected_asym_ids( self, bioassembly_dict: Mapping[str, Any], entity_to_asym_id_int: Mapping[str, Sequence[int]], selected_token_indices: Optional[torch.Tensor], entity_ids: set[str], ) -> tuple[set[int], set[int], dict[int, str], dict[int, str], dict[str, str]]: """ Extracts the selected asym IDs based on the provided bioassembly dictionary and entity IDs. Args: bioassembly_dict (Mapping[str, Any]): The bioassembly dictionary containing entity information. entity_to_asym_id_int (Mapping[str, Sequence[int]]): Mapping from entity ID to asym ID integers. selected_token_indices (Optional[torch.Tensor]): Indices of selected tokens. entity_ids (set[str]): Set of entity IDs to consider. Returns: tuple: A tuple containing: - selected_asym_ids (set[int]): Set of selected asym IDs. - asym_id_ints (set[int]): Set of asym ID integers. - asym_to_entity_id (dict[int, str]): Mapping from asym ID integers to entity IDs. - asym_id_int_to_sequence (dict[int, str]): Mapping from asym ID integers to sequences. - entity_id_to_sequence (dict[str, str]): Mapping from entity IDs to sequences. """ asym_to_entity_id: dict[int, str] = {} # Only count the selected Prot/RNA entities, many-to-one mapping for entity_id, asym_id_int_list in entity_to_asym_id_int.items(): if entity_id in entity_ids: for asym_id_int in asym_id_int_list: asym_to_entity_id[asym_id_int] = entity_id entity_id_to_sequence = { k: v for (k, v) in bioassembly_dict["sequences"].items() if k in entity_ids and k in entity_to_asym_id_int } asym_id_ints = set( [ asym_id_int for (asym_id_int, entity_id) in asym_to_entity_id.items() if entity_id in entity_ids ] ) # Only count Prot/RNA chains, many-to-one mapping asym_id_int_to_sequence = { asym_id_int: entity_id_to_sequence[entity_id] for (asym_id_int, entity_id) in asym_to_entity_id.items() } atom_array = bioassembly_dict["atom_array"] token_array = bioassembly_dict["token_array"] if selected_token_indices is None: selected_asym_ids = set( [ atom_array[idx].asym_id_int for idx in token_array.get_annotation("centre_atom_index") ] ) else: selected_asym_ids = set( [ atom_array[idx].asym_id_int for idx in token_array[selected_token_indices].get_annotation( "centre_atom_index" ) ] ) return ( selected_asym_ids, asym_id_ints, asym_to_entity_id, asym_id_int_to_sequence, entity_id_to_sequence, ) def get_msa_pipeline( self, is_homomer_or_monomer: bool, selected_asym_ids: set[int], asym_to_entity_id: dict[int, str], asym_id_int_to_sequence: dict[int, str], entity_id_to_sequence: dict[str, str], bioassembly_dict: Mapping[str, Any], entity_to_asym_id_int: Mapping[str, Sequence[int]], msa_entity_type="prot", ) -> Optional[dict[str, np.ndarray]]: """ Processes the MSA pipeline for the given bioassembly dictionary and selected asym IDs. Args: is_homomer_or_monomer (bool): Indicates if the sequence is a homomer or monomer. selected_asym_ids (set[int]): Set of selected asym IDs. asym_to_entity_id (dict[int, str]): Mapping from asym ID integers to entity IDs. asym_id_int_to_sequence (dict[int, str]): Mapping from asym ID integers to sequences. entity_id_to_sequence (dict[str, str]): Mapping from entity IDs to sequences. bioassembly_dict (Mapping[str, Any]): The bioassembly dictionary containing entity information. entity_to_asym_id_int (Mapping[str, Sequence[int]]): Mapping from entity ID to asym ID integers. msa_entity_type (str): The type of MSA entity to process. Defaults to "prot". Returns: Optional[dict[str, np.ndarray]]: A dictionary containing the processed MSA features, or None if no features are processed. Raises: AssertionError: If `msa_entity_type` is "rna" and `is_homomer_or_monomer` is False. """ if msa_entity_type == "rna": assert is_homomer_or_monomer, "RNA MSAs do not pairing" pdb_id = bioassembly_dict["pdb_id"] sequence_to_features: dict[str, dict[str, Any]] = {} for entity_id, sequence in entity_id_to_sequence.items(): if sequence in sequence_to_features: # It is possible that different entity ids correspond to the same sequence continue if all( [ asym_id_int not in selected_asym_ids for asym_id_int in entity_to_asym_id_int[entity_id] ] ): # All chains corresponding to this entity are not selected continue sequence_feat = self.process_single_sequence( pdb_name=f"{pdb_id}_{entity_id}", sequence=sequence, pdb_id=pdb_id, is_homomer_or_monomer=is_homomer_or_monomer, ) sequence_feat = convert_monomer_features(sequence_feat) sequence_to_features[sequence] = sequence_feat all_chain_features = { asym_id_int: deepcopy(sequence_to_features[seq]) for asym_id_int, seq in asym_id_int_to_sequence.items() if seq in sequence_to_features } del sequence_to_features if len(all_chain_features) == 0: return None np_example = merge_all_chain_features( pdb_id=pdb_id, all_chain_features=all_chain_features, asym_to_entity_id=asym_to_entity_id, is_homomer_or_monomer=is_homomer_or_monomer, merge_method=self.merge_method, max_size=self.max_size, msa_entity_type=msa_entity_type, ) return np_example class PROTMSAFeaturizer(BaseMSAFeaturizer): def __init__( self, dataset_name: str = "", seq_to_pdb_idx_path: str = "", distillation_index_file: str = None, indexing_method: str = "sequence", pairing_db: Optional[str] = "", non_pairing_db: str = "mmseqs_all", merge_method: str = "dense_max", seq_limits: Optional[dict[str, int]] = {}, max_size: int = 16384, pdb_jackhmmer_dir: str = None, pdb_mmseqs_dir: str = None, distillation_mmseqs_dir: str = None, distillation_uniclust_dir: str = None, **kwargs, ): super().__init__( indexing_method=indexing_method, merge_method=merge_method, seq_limits=seq_limits, max_size=max_size, **kwargs, ) self.dataset_name = dataset_name self.pdb_jackhmmer_dir = pdb_jackhmmer_dir self.pdb_mmseqs_dir = pdb_mmseqs_dir self.distillation_mmseqs_dir = distillation_mmseqs_dir self.distillation_uniclust_dir = distillation_uniclust_dir self.pairing_db = pairing_db if len(pairing_db) > 0 else None if non_pairing_db == "mmseqs_all": self.non_pairing_db = ["uniref100", "mmseqs_other"] else: self.non_pairing_db = [db_name for db_name in non_pairing_db.split(",")] with open(seq_to_pdb_idx_path, "r") as f: self.seq_to_pdb_idx = json.load(f) # If distillation data is avaiable if distillation_index_file is not None: with open(distillation_index_file, "r") as f: self.distillation_pdb_id_to_msa_dir = json.load(f) else: self.distillation_pdb_id_to_msa_dir = None def get_msa_path(self, db_name: str, sequence: str, pdb_id: str) -> str: """ Get the path of an MSA file Args: db_name (str): name of genomics database sequence (str): input sequence pdb_id (str): pdb_id of input sequence Returns: str: file path """ if self.indexing_method == "pdb_id" and self.distillation_pdb_id_to_msa_dir: rel_path = self.distillation_pdb_id_to_msa_dir[pdb_id] if db_name == "uniclust30": msa_dir_path = opjoin(self.distillation_uniclust_dir, rel_path) elif db_name in ["uniref100", "mmseqs_other"]: msa_dir_path = opjoin(self.distillation_mmseqs_dir, rel_path) else: raise ValueError( f"Indexing with {self.indexing_method} is not supported for {db_name}" ) if opexists(msa_path := opjoin(msa_dir_path, f"{db_name}_hits.a3m")): return msa_path else: return opjoin(msa_dir_path, f"{db_name}.a3m") else: # indexing_method == "sequence" pdb_index = self.seq_to_pdb_idx[sequence] if db_name in ["uniref100", "mmseqs_other"]: return opjoin( self.pdb_mmseqs_dir, str(pdb_index), f"{db_name}_hits.a3m" ) else: return opjoin( self.pdb_jackhmmer_dir, f"pdb_on_{db_name}", "results", f"{pdb_index}.a3m", ) def process_single_sequence( self, pdb_name: str, sequence: str, pdb_id: str, is_homomer_or_monomer: bool, ) -> dict[str, np.ndarray]: """ Get basic MSA features for a single sequence. Args: pdb_name (str): f"{pdb_id}_{entity_id}" of the input entity sequence (str): input sequnce pdb_id (str): pdb_id of input sequence is_homomer_or_monomer (bool): True if the input sequence is a homomer or a monomer Returns: Dict[str, np.ndarray]: the basic MSA features of the input sequence """ raw_msa_paths, seq_limits = [], [] for db_name in self.non_pairing_db: if opexists( path := self.get_msa_path(db_name, sequence, pdb_id) ) and path.endswith(".a3m"): raw_msa_paths.append(path) seq_limits.append(self.seq_limits.get(db_name, SEQ_LIMITS[db_name])) # Get sequence and non-pairing msa features sequence_features = process_single_sequence( pdb_name=pdb_name, sequence=sequence, raw_msa_paths=raw_msa_paths, seq_limits=seq_limits, msa_entity_type="prot", msa_type="non_pairing", ) # Get pairing msa features if not is_homomer_or_monomer: # Separately process the MSA needed for pairing raw_msa_paths, seq_limits = [], [] if opexists( path := self.get_msa_path(self.pairing_db, sequence, pdb_id) ) and path.endswith(".a3m"): raw_msa_paths = [ path, ] seq_limits.append( self.seq_limits.get(self.pairing_db, SEQ_LIMITS[self.pairing_db]) ) if len(raw_msa_paths) == 0: raise ValueError(f"{pdb_name} does not have MSA for pairing") all_seq_msa_features = load_and_process_msa( pdb_name=pdb_name, msa_type="pairing", raw_msa_paths=raw_msa_paths, seq_limits=seq_limits, identifier_func=get_identifier_func(pairing_db=self.pairing_db), handle_empty="raise_error", ) sequence_features.update(all_seq_msa_features) return sequence_features def get_msa_features_for_assembly( self, bioassembly_dict: Mapping[str, Any], entity_to_asym_id_int: Mapping[str, Sequence[int]], selected_token_indices: Optional[torch.Tensor], ) -> dict[str, np.ndarray]: """ Get MSA features for the bioassembly. Args: bioassembly_dict (Mapping[str, Any]): the bioassembly dict with sequence, atom_array and token_array. entity_to_asym_id_int (Mapping[str, Sequence[int]]): mapping from entity_id to asym_id_int. selected_token_indices (torch.Tensor): Cropped token indices. Returns: Dict[str, np.ndarray]: the basic MSA features of the bioassembly. """ protein_entity_ids = self.get_entity_ids( bioassembly_dict, msa_entity_type="prot" ) if len(protein_entity_ids) == 0: return None ( selected_asym_ids, asym_id_ints, asym_to_entity_id, asym_id_int_to_sequence, entity_id_to_sequence, ) = self.get_selected_asym_ids( bioassembly_dict=bioassembly_dict, entity_to_asym_id_int=entity_to_asym_id_int, selected_token_indices=selected_token_indices, entity_ids=protein_entity_ids, ) # No pairing_db specified (all proteins are treated as monomers) or only one sequence is_homomer_or_monomer = (self.pairing_db is None) or ( len( set( [ asym_id_int_to_sequence[asym_id_int] for asym_id_int in selected_asym_ids if asym_id_int in asym_id_ints ] ) ) == 1 ) np_example = self.get_msa_pipeline( is_homomer_or_monomer=is_homomer_or_monomer, selected_asym_ids=selected_asym_ids, asym_to_entity_id=asym_to_entity_id, asym_id_int_to_sequence=asym_id_int_to_sequence, entity_id_to_sequence=entity_id_to_sequence, bioassembly_dict=bioassembly_dict, entity_to_asym_id_int=entity_to_asym_id_int, msa_entity_type="prot", ) return np_example class RNAMSAFeaturizer(BaseMSAFeaturizer): def __init__( self, seq_to_pdb_idx_path: str = "", indexing_method: str = "sequence", merge_method: str = "dense_max", seq_limits: Optional[dict[str, int]] = {}, max_size: int = 16384, rna_msa_dir: str = None, **kwargs, ) -> None: super().__init__( indexing_method=indexing_method, merge_method=merge_method, seq_limits=seq_limits, max_size=max_size, **kwargs, ) # By default, use all the database in paper self.rna_msa_dir = rna_msa_dir self.non_pairing_db = ["rfam", "rnacentral", "nucleotide"] with open(seq_to_pdb_idx_path, "r") as f: self.seq_to_pdb_idx = json.load(f) # it's rna sequence to pdb list def get_msa_path( self, db_name: str, sequence: str, pdb_id_entity_id: str, reduced: bool = True ) -> str: """ Get the path of an RNA MSA file Args: db_name (str): genetics databases for RNA chains sequence (str): input sequence pdb_id_entity_id (str): pdb_id_entity_id of input sequence reduced (bool): whether reduce the sto files to max 1w Returns: str: file path """ assert self.indexing_method in [ "pdb_id_entity_id", "sequence", ], "use the pdb_id_entity_id or sequence to search msa dir" if reduced: suffix = "_max_1w" else: suffix = "" if self.indexing_method == "sequence": # only the first pdb save the rna msa if sequence in self.seq_to_pdb_idx: pdb_id_entity_id = self.seq_to_pdb_idx[sequence][0] else: logger.info(f"{pdb_id_entity_id} not in seq_to_pdb_idx") pdb_id_entity_id = "not_exist" rel_path = f"{pdb_id_entity_id}/{db_name}.sto" msa_dir_path = opjoin(f"{self.rna_msa_dir}{suffix}", rel_path) return msa_dir_path def process_single_sequence( self, pdb_name: str, sequence: str, pdb_id: str, is_homomer_or_monomer: bool, ) -> dict[str, np.ndarray]: """ Get basic MSA features for a single sequence. Args: pdb_name (str): f"{pdb_id}_{entity_id}" of the input entity sequence (str): input sequnce pdb_id (str): pdb_id of input sequence is_homomer_or_monomer (bool): True if the input sequence is a homomer or a monomer Returns: Dict[str, np.ndarray]: the basic MSA features of the input sequence """ raw_msa_paths, seq_limits = [], [] for db_name in self.non_pairing_db: if opexists( path := self.get_msa_path(db_name, sequence, pdb_name) ) and path.endswith(".sto"): raw_msa_paths.append(path) seq_limits.append(self.seq_limits.get(db_name, SEQ_LIMITS[db_name])) sequence_features = process_single_sequence( pdb_name=pdb_name, sequence=sequence, raw_msa_paths=raw_msa_paths, seq_limits=seq_limits, msa_entity_type="rna", msa_type="non_pairing", ) return sequence_features def get_msa_features_for_assembly( self, bioassembly_dict: Mapping[str, Any], entity_to_asym_id_int: Mapping[str, Sequence[int]], selected_token_indices: Optional[torch.Tensor], ) -> dict[str, np.ndarray]: """ Get MSA features for the bioassembly. Args: bioassembly_dict (Mapping[str, Any]): the bioassembly dict with sequence, atom_array and token_array. entity_to_asym_id_int (Mapping[str, Sequence[int]]): mapping from entity_id to asym_id_int. selected_token_indices (torch.Tensor): Cropped token indices. Returns: Dict[str, np.ndarray]: the basic MSA features of the bioassembly. """ rna_entity_ids = self.get_entity_ids(bioassembly_dict, msa_entity_type="rna") if len(rna_entity_ids) == 0: return None ( selected_asym_ids, asym_id_ints, asym_to_entity_id, asym_id_int_to_sequence, entity_id_to_sequence, ) = self.get_selected_asym_ids( bioassembly_dict=bioassembly_dict, entity_to_asym_id_int=entity_to_asym_id_int, selected_token_indices=selected_token_indices, entity_ids=rna_entity_ids, ) is_homomer_or_monomer = True np_example = self.get_msa_pipeline( is_homomer_or_monomer=is_homomer_or_monomer, selected_asym_ids=selected_asym_ids, asym_to_entity_id=asym_to_entity_id, asym_id_int_to_sequence=asym_id_int_to_sequence, entity_id_to_sequence=entity_id_to_sequence, bioassembly_dict=bioassembly_dict, entity_to_asym_id_int=entity_to_asym_id_int, msa_entity_type="rna", ) return np_example class MSAFeaturizer: def __init__( self, prot_msa_args: dict = {}, rna_msa_args: dict = {}, enable_rna_msa: bool = False, ): self.prot_msa_featurizer = PROTMSAFeaturizer(**prot_msa_args) self.enable_rna_msa = enable_rna_msa if self.enable_rna_msa: self.rna_msa_featurizer = RNAMSAFeaturizer(**rna_msa_args) def __call__( self, bioassembly_dict: dict[str, Any], selected_indices: np.ndarray, entity_to_asym_id_int: Mapping[str, int], ) -> Optional[dict[str, np.ndarray]]: """ Processes the bioassembly dictionary to generate MSA features for both protein and RNA entities, if enabled. Args: bioassembly_dict (dict[str, Any]): The bioassembly dictionary containing entity information. selected_indices (np.ndarray): Indices of selected tokens. entity_to_asym_id_int (Mapping[str, int]): Mapping from entity ID to asym ID integers. Returns: Optional[dict[str, np.ndarray]]: A dictionary containing the merged MSA features for the bioassembly, or None if no features are generated. """ prot_msa_feats = self.prot_msa_featurizer.get_msa_features_for_assembly( bioassembly_dict=bioassembly_dict, entity_to_asym_id_int=entity_to_asym_id_int, selected_token_indices=selected_indices, ) if self.enable_rna_msa: rna_msa_feats = self.rna_msa_featurizer.get_msa_features_for_assembly( bioassembly_dict=bioassembly_dict, entity_to_asym_id_int=entity_to_asym_id_int, selected_token_indices=selected_indices, ) else: rna_msa_feats = None np_chains_list = [] if prot_msa_feats is not None: np_chains_list.append(prot_msa_feats) if rna_msa_feats is not None: np_chains_list.append(rna_msa_feats) if len(np_chains_list) == 0: return None msa_feats = merge_features_from_prot_rna(np_chains_list) msa_feats = self.tokenize( msa_feats=msa_feats, token_array=bioassembly_dict["token_array"], atom_array=bioassembly_dict["atom_array"], ) return msa_feats def tokenize( self, msa_feats: Mapping[str, np.ndarray], token_array: TokenArray, atom_array: AtomArray, ) -> dict[str, np.ndarray]: """ Tokenize raw MSA features. Args: msa_feats (Dict[str, np.ndarray]): raw MSA features. token_array (TokenArray): token array of this bioassembly atom_array (AtomArray): atom array of this bioassembly Returns: Dict[str, np.ndarray]: the tokenized MSA features of the bioassembly. """ msa_feats = tokenize_msa( msa_feats=msa_feats, token_array=token_array, atom_array=atom_array ) # Add to tracking for msa analysis msa_feats.update( { "prot_pair_num_alignments": msa_feats.get( "prot_pair_num_alignments", np.asarray(0, dtype=np.int32) ), "prot_unpair_num_alignments": msa_feats.get( "prot_unpair_num_alignments", np.asarray(0, dtype=np.int32) ), "rna_pair_num_alignments": msa_feats.get( "rna_pair_num_alignments", np.asarray(0, dtype=np.int32) ), "rna_unpair_num_alignments": msa_feats.get( "rna_unpair_num_alignments", np.asarray(0, dtype=np.int32) ), } ) return { k: v for (k, v) in msa_feats.items() if k in ["msa", "has_deletion", "deletion_value", "deletion_mean", "profile"] + [ "prot_pair_num_alignments", "prot_unpair_num_alignments", "rna_pair_num_alignments", "rna_unpair_num_alignments", ] } # Common function for train and inference def process_single_sequence( pdb_name: str, sequence: str, raw_msa_paths: Optional[list[str]], seq_limits: Optional[list[str]], msa_entity_type: str = "prot", msa_type: str = "non_pairing", ) -> FeatureDict: """ Processes a single sequence to generate sequence and MSA features. Args: pdb_name (str): The name of the PDB entry. sequence (str): The input sequence. raw_msa_paths (Optional[list[str]]): List of paths to raw MSA files. seq_limits (Optional[list[str]]): List of sequence limits for different databases. msa_entity_type (str): The type of MSA entity, either "prot" or "rna". Defaults to "prot". msa_type (str): The type of MSA, either "non_pairing" or "pairing". Defaults to "non_pairing". Returns: FeatureDict: A dictionary containing the sequence and MSA features. Raises: AssertionError: If `msa_entity_type` is not "prot" or "rna". """ assert msa_entity_type in ["prot", "rna"] num_res = len(sequence) if msa_entity_type == "prot": sequence_features = make_sequence_features( sequence=sequence, num_res=num_res, ) elif msa_entity_type == "rna": sequence_features = make_sequence_features( sequence=sequence, num_res=num_res, mapping=rna_order_with_x, x_token="N", ) msa_features = load_and_process_msa( pdb_name=pdb_name, msa_type=msa_type, raw_msa_paths=raw_msa_paths, seq_limits=seq_limits, input_sequence=sequence, msa_entity_type=msa_entity_type, ) sequence_features.update(msa_features) return sequence_features # Common function for train and inference def tokenize_msa( msa_feats: Mapping[str, np.ndarray], token_array: TokenArray, atom_array: AtomArray, ) -> dict[str, np.ndarray]: """ Tokenize raw MSA features. Args: msa_feats (Dict[str, np.ndarray]): raw MSA features. token_array (TokenArray): token array of this bioassembly atom_array (AtomArray): atom array of this bioassembly Returns: Dict[str, np.ndarray]: the tokenized MSA features of the bioassembly. """ token_center_atom_idxs = token_array.get_annotation("centre_atom_index") # res_id: (asym_id, residue_index) # msa_idx refers to the column number of a residue in the msa array res_id_2_msa_idx = { (msa_feats["asym_id"][idx], msa_feats["residue_index"][idx]): idx for idx in range(msa_feats["msa"].shape[1]) } restypes = [] col_idxs_in_msa = [] col_idxs_in_new_msa = [] for token_idx, center_atom_idx in enumerate(token_center_atom_idxs): restypes.append(STD_RESIDUES[atom_array.cano_seq_resname[center_atom_idx]]) if ( res_id := ( atom_array[center_atom_idx].asym_id_int, atom_array[center_atom_idx].res_id, ) ) in res_id_2_msa_idx: col_idxs_in_msa.append(res_id_2_msa_idx[res_id]) col_idxs_in_new_msa.append(token_idx) num_msa_seq, _ = msa_feats["msa"].shape num_tokens = len(token_center_atom_idxs) restypes = np.array(restypes) col_idxs_in_new_msa = np.array(col_idxs_in_new_msa) col_idxs_in_msa = np.array(col_idxs_in_msa) # msa # For non-amino acid tokens, copy the token itself feat_name = "msa" new_feat = np.repeat(restypes[None, ...], num_msa_seq, axis=0) new_feat[:, col_idxs_in_new_msa] = msa_feats[feat_name][:, col_idxs_in_msa] msa_feats[feat_name] = new_feat # has_deletion, deletion_value # Assign 0 to non-amino acid tokens for feat_name in ["has_deletion", "deletion_value"]: new_feat = np.zeros((num_msa_seq, num_tokens), dtype=msa_feats[feat_name].dtype) new_feat[:, col_idxs_in_new_msa] = msa_feats[feat_name][:, col_idxs_in_msa] msa_feats[feat_name] = new_feat # deletion_mean # Assign 0 to non-amino acid tokens feat_name = "deletion_mean" new_feat = np.zeros((num_tokens,)) new_feat[col_idxs_in_new_msa] = msa_feats[feat_name][col_idxs_in_msa] msa_feats[feat_name] = new_feat # profile # Assign one-hot enbedding (one-hot distribution) to non-amino acid tokens corresponding to restype feat_name = "profile" new_feat = np.zeros((num_tokens, 32)) new_feat[np.arange(num_tokens), restypes] = 1 new_feat[col_idxs_in_new_msa, :] = msa_feats[feat_name][col_idxs_in_msa, :] msa_feats[feat_name] = new_feat return msa_feats # Common function for train and inference def merge_all_chain_features( pdb_id: str, all_chain_features: dict[str, FeatureDict], asym_to_entity_id: dict, is_homomer_or_monomer: bool = False, merge_method: str = "dense_max", max_size: int = 16384, msa_entity_type: str = "prot", ) -> dict[str, np.ndarray]: """ Merges features from all chains in the bioassembly. Args: pdb_id (str): The PDB ID of the bioassembly. all_chain_features (dict[str, FeatureDict]): Features for each chain in the bioassembly. asym_to_entity_id (dict): Mapping from asym ID to entity ID. is_homomer_or_monomer (bool): Indicates if the bioassembly is a homomer or monomer. Defaults to False. merge_method (str): Method used for merging features. Defaults to "dense_max". max_size (int): Maximum size of the MSA. Defaults to 16384. msa_entity_type (str): Type of MSA entity, either "prot" or "rna". Defaults to "prot". Returns: dict[str, np.ndarray]: Merged features for the bioassembly. """ all_chain_features = add_assembly_features( pdb_id, all_chain_features, asym_to_entity_id=asym_to_entity_id, ) if msa_entity_type == "rna": np_example = rna_merge( is_homomer_or_monomer=is_homomer_or_monomer, all_chain_features=all_chain_features, merge_method=merge_method, msa_crop_size=max_size, ) elif msa_entity_type == "prot": np_example = pair_and_merge( is_homomer_or_monomer=is_homomer_or_monomer, all_chain_features=all_chain_features, merge_method=merge_method, msa_crop_size=max_size, ) np_example = clip_msa(np_example, max_num_msa=max_size) return np_example class InferenceMSAFeaturizer(object): # Now we only support protein msa in inference @staticmethod def process_prot_single_sequence( sequence: str, description: str, is_homomer_or_monomer: bool, msa_dir: Union[str, None], pairing_db: str, ) -> FeatureDict: """ Processes a single protein sequence to generate sequence and MSA features. Args: sequence (str): The input protein sequence. description (str): Description of the sequence, typically the PDB name. is_homomer_or_monomer (bool): Indicates if the sequence is a homomer or monomer. msa_dir (Union[str, None]): Directory containing the MSA files, or None if no pre-computed MSA is provided. pairing_db (str): Database used for pairing. Returns: FeatureDict: A dictionary containing the sequence and MSA features. Raises: AssertionError: If the pairing MSA file does not exist when `is_homomer_or_monomer` is False. """ # For non-pairing MSA if msa_dir is None: # No pre-computed MSA was provided, and the MSA search failed raw_msa_paths = [] else: raw_msa_paths = [opjoin(msa_dir, "non_pairing.a3m")] pdb_name = description sequence_features = process_single_sequence( pdb_name=pdb_name, sequence=sequence, raw_msa_paths=raw_msa_paths, seq_limits=[-1], msa_entity_type="prot", msa_type="non_pairing", ) if not is_homomer_or_monomer: # Separately process the pairing MSA assert opexists( raw_msa_path := opjoin(msa_dir, "pairing.a3m") ), f"No pairing-MSA of {pdb_name} (please check {raw_msa_path})" all_seq_msa_features = load_and_process_msa( pdb_name=pdb_name, msa_type="pairing", raw_msa_paths=[raw_msa_path], seq_limits=[-1], identifier_func=get_identifier_func( pairing_db=pairing_db, ), handle_empty="raise_error", ) sequence_features.update(all_seq_msa_features) return sequence_features @staticmethod def get_inference_prot_msa_features_for_assembly( bioassembly: Sequence[Mapping[str, Mapping[str, Any]]], entity_to_asym_id: Mapping[str, set[int]], ) -> FeatureDict: """ Processes the bioassembly to generate MSA features for protein entities in inference mode. Args: bioassembly (Sequence[Mapping[str, Mapping[str, Any]]]): The bioassembly containing entity information. entity_to_asym_id (Mapping[str, set[int]]): Mapping from entity ID to asym ID integers. Returns: FeatureDict: A dictionary containing the MSA features for the protein entities. Raises: AssertionError: If the provided precomputed MSA path does not exist. """ entity_to_asym_id_int = dict(entity_to_asym_id) asym_to_entity_id = {} entity_id_to_sequence = {} # In inference mode, the keys in bioassembly is different from training # Only contains protein entity, many-to-one mapping entity_id_to_sequence = {} for i, entity_info_wrapper in enumerate(bioassembly): entity_id = str(i + 1) entity_type = list(entity_info_wrapper.keys())[0] entity_info = entity_info_wrapper[entity_type] if entity_type == PROT_TYPE_NAME: # Update entity_id_to_sequence entity_id_to_sequence[entity_id] = entity_info["sequence"] # Update asym_to_entity_id for asym_id_int in entity_to_asym_id_int[entity_id]: asym_to_entity_id[asym_id_int] = entity_id if len(entity_id_to_sequence) == 0: # No protein entity return None is_homomer_or_monomer = ( len(set(entity_id_to_sequence.values())) == 1 ) # Only one protein sequence sequence_to_entity = defaultdict(list) for entity_id, seq in entity_id_to_sequence.items(): sequence_to_entity[seq].append(entity_id) sequence_to_features: dict[str, dict[str, Any]] = {} msa_sequences = {} msa_dirs = {} for idx, (sequence, entity_id_list) in enumerate(sequence_to_entity.items()): msa_info = bioassembly[int(entity_id_list[0]) - 1][PROT_TYPE_NAME]["msa"] msa_dir = msa_info.get("precomputed_msa_dir", None) if msa_dir is not None: assert opexists( msa_dir ), f"The provided precomputed MSA path of entities {entity_id_list} does not exists: \n{msa_dir}" msa_dirs[idx] = msa_dir else: pairing_db_fpath = msa_info.get("pairing_db_fpath", None) non_pairing_db_fpath = msa_info.get("non_pairing_db_fpath", None) assert ( pairing_db_fpath is not None ), "Path of pairing MSA database is not given." assert ( non_pairing_db_fpath is not None ), "Path of non-pairing MSA database is not given." assert msa_info["pairing_db"] in ["uniprot", "", None], ( f"Using {msa_info['pairing_db']} as the source for MSA pairing " f"is not supported in online MSA searching." ) msa_info["pairing_db"] = "uniprot" msa_sequences[idx] = (sequence, pairing_db_fpath, non_pairing_db_fpath) if len(msa_sequences) > 0: msa_dirs.update(msa_parallel(msa_sequences)) for idx, (sequence, entity_id_list) in enumerate(sequence_to_entity.items()): if len(entity_id_list) > 1: logger.info( f"Entities {entity_id_list} correspond to the same sequence." ) msa_info = bioassembly[int(entity_id_list[0]) - 1][PROT_TYPE_NAME]["msa"] msa_dir = msa_dirs[idx] description = f"entity_{'_'.join(map(str, entity_id_list))}" sequence_feat = InferenceMSAFeaturizer.process_prot_single_sequence( sequence=sequence, description=description, is_homomer_or_monomer=is_homomer_or_monomer, msa_dir=msa_dir, pairing_db=msa_info["pairing_db"], ) sequence_feat = convert_monomer_features(sequence_feat) sequence_to_features[sequence] = sequence_feat if msa_dir and opexists(msa_dir) and idx in msa_sequences.keys(): if (msa_save_dir := msa_info.get("msa_save_dir", None)) is not None: if opexists(dst_dir := opjoin(msa_save_dir, str(idx + 1))): shutil.rmtree(dst_dir) shutil.copytree(msa_dir, dst_dir) for fname in os.listdir(dst_dir): if not fname.endswith(".a3m"): os.remove(opjoin(dst_dir, fname)) else: shutil.rmtree(msa_dir) all_chain_features = { asym_id_int: deepcopy( sequence_to_features[entity_id_to_sequence[entity_id]] ) for asym_id_int, entity_id in asym_to_entity_id.items() if seq in sequence_to_features } if len(all_chain_features) == 0: return None np_example = merge_all_chain_features( pdb_id="test_assembly", all_chain_features=all_chain_features, asym_to_entity_id=asym_to_entity_id, is_homomer_or_monomer=is_homomer_or_monomer, merge_method="dense_max", max_size=MSA_MAX_SIZE, msa_entity_type="prot", ) return np_example def make_msa_feature( bioassembly: Sequence[Mapping[str, Mapping[str, Any]]], entity_to_asym_id: Mapping[str, Sequence[str]], token_array: TokenArray, atom_array: AtomArray, ) -> Optional[dict[str, np.ndarray]]: """ Processes the bioassembly to generate MSA features for protein entities in inference mode and tokenizes the features. Args: bioassembly (Sequence[Mapping[str, Mapping[str, Any]]]): The bioassembly containing entity information. entity_to_asym_id (Mapping[str, Sequence[str]]): Mapping from entity ID to asym ID strings. token_array (TokenArray): Token array of the bioassembly. atom_array (AtomArray): Atom array of the bioassembly. Returns: Optional[dict[str, np.ndarray]]: A dictionary containing the tokenized MSA features for the protein entities, or an empty dictionary if no features are generated. """ msa_feats = InferenceMSAFeaturizer.get_inference_prot_msa_features_for_assembly( bioassembly=bioassembly, entity_to_asym_id=entity_to_asym_id, ) if msa_feats is None: return {} msa_feats = tokenize_msa( msa_feats=msa_feats, token_array=token_array, atom_array=atom_array, ) return { k: v for (k, v) in msa_feats.items() if k in ["msa", "has_deletion", "deletion_value", "deletion_mean", "profile"] }