# Copyright 2024 ByteDance and/or its affiliates. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from functools import partial from typing import Optional, Union import torch import torch.nn as nn import torch.nn.functional as F from torch.nn import Linear from protenix.model.utils import ( flatten_final_dims, move_final_dim_to_dim, pad_at_dim, reshape_at_dim, ) from protenix.openfold_local.model.primitives import LayerNorm from protenix.openfold_local.utils.chunk_utils import chunk_layer LinearNoBias = partial(Linear, bias=False) class AdaptiveLayerNorm(nn.Module): """ Implements Algorithm 26 in AF3 """ def __init__(self, c_a: int = 768, c_s: int = 384) -> None: """ Args: c_a (int, optional): the embedding dim of a(single feature aggregated atom info). Defaults to 768. c_s (int, optional): hidden dim [for single embedding]. Defaults to 384. """ super(AdaptiveLayerNorm, self).__init__() self.layernorm_a = nn.LayerNorm(c_a, elementwise_affine=False, bias=False) # The pytorch version should be newer than 2.1 self.layernorm_s = nn.LayerNorm(c_s, bias=False) self.linear_s = Linear(in_features=c_s, out_features=c_a) self.linear_nobias_s = LinearNoBias(in_features=c_s, out_features=c_a) def zero_init(self): nn.init.zeros_(self.linear_s.weight) nn.init.zeros_(self.linear_s.bias) nn.init.zeros_(self.linear_nobias_s.weight) def forward(self, a: torch.Tensor, s: torch.Tensor) -> torch.Tensor: """ Args: a (torch.Tensor): the single feature aggregate per-atom representation [..., N_token, c_a] s (torch.Tensor): single embedding [..., N_token, c_s] Returns: torch.Tensor: the updated a from AdaLN [..., N_token, c_a] """ a = self.layernorm_a(a) s = self.layernorm_s(s) a = torch.sigmoid(self.linear_s(s)) * a + self.linear_nobias_s(s) return a class BiasInitLinear(Linear): """Support biasinit for nn.Linear Called just like torch.nn.Linear.""" def __init__( self, in_features: int, out_features: int, bias: bool = True, biasinit: float = 0.0, ) -> None: """ Args: in_features (int): in_features out_features (int): out_features bias (bool, optional): whether add bias. Defaults to True. biasinit (float, optional): the initial bias value. Defaults to 0.0. """ super(BiasInitLinear, self).__init__( in_features=in_features, out_features=out_features, bias=bias ) nn.init.zeros_(tensor=self.weight) if bias: nn.init.constant_(tensor=self.bias, val=biasinit) class Transition(nn.Module): """ Implements Algorithm 11 in AF3 """ def __init__(self, c_in: int, n: int) -> None: """ Args: c_in (int, optional): the input dimension. n (int, optional): factor by which c_in is multiplied to obtain hidden dimension. """ super(Transition, self).__init__() self.n = n self.c_in = c_in self.layernorm1 = LayerNorm(c_in) self.linear_no_bias_a = LinearNoBias(in_features=c_in, out_features=n * c_in) self.linear_no_bias_b = LinearNoBias(in_features=c_in, out_features=n * c_in) self.linear_no_bias = LinearNoBias(in_features=n * c_in, out_features=c_in) self.zero_init() def zero_init(self): nn.init.zeros_(self.linear_no_bias.weight) def forward(self, x: torch.Tensor) -> torch.Tensor: """ Args: x (torch.Tensor): the input tensor [..., c] Returns: torch.Tensor: the output tensor as the same shape of x [..., c] """ if self.training: x = self.layernorm1(x) a = self.linear_no_bias_a(x) b = self.linear_no_bias_b(x) x = self.linear_no_bias(F.silu(a) * b) return x else: other_dims = x.shape[:-1] dim_size = x.shape[-1] size = x.shape[-2] x = x.reshape(-1, dim_size) chunk_num = 1 if size < 3200 else 8 chunks = torch.chunk(x, chunk_num, dim=-2) outputs = torch.empty( (x.shape[0], self.c_in), dtype=x.dtype, device=x.device ) start = 0 for chunk in chunks: y = self.layernorm1(chunk) a = self.linear_no_bias_a(y) a = F.silu(a, True) b = self.linear_no_bias_b(y) del y b *= a del a b = self.linear_no_bias(b) outputs[start : start + b.shape[0]] = b start += b.shape[0] del b outputs = outputs.reshape(*other_dims, self.c_in) return outputs def _attention( q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, attn_bias: Optional[torch.Tensor] = None, use_efficient_implementation: bool = False, attn_weight_dropout_p: float = 0.0, inplace_safe: bool = False, ) -> torch.Tensor: """Attention. Args: q (torch.Tensor): query tensor of shape [..., n_q, d] k (torch.Tensor): key tensor of shape [..., n_kv, d] v (torch.Tensor): value tensor of shape[..., n_kv, d] attn_bias (torch.Tensor, optional): attention bias tensor of shape [..., n_q, n_kv]. Defaults to None. use_efficient_implementation (bool): whether to use the torch.nn.functional.scaled_dot_product_attention, Defaults to False. attn_weight_dropout_p (float): Dropout probability; if greater than 0.0, dropout is applied, Defaults to 0.0. Returns: torch.Tensor: output of tensor [..., n_q, d] """ assert k.shape == v.shape if use_efficient_implementation: attn_output = F.scaled_dot_product_attention( query=q, key=k, value=v, attn_mask=attn_bias, dropout_p=attn_weight_dropout_p, ) return attn_output # [..., n_kv, d] -> [..., d, n_kv] k = k.transpose(-1, -2) # [..., n_q, d], [..., d, n_kv] -> [..., n_q, n_kv] attn_weights = q @ k if attn_bias is not None: if inplace_safe: attn_weights += attn_bias else: attn_weights = attn_weights + attn_bias # [..., n_q, n_kv] attn_weights = F.softmax(attn_weights, dim=-1) # [..., n_q, n_kv], [..., n_kv, d] -> [..., n_q, d] attn_output = attn_weights @ v return attn_output def rearrange_qk_to_dense_trunk( q: Union[torch.Tensor, list[torch.Tensor]], k: Union[torch.Tensor, list[torch.Tensor]], dim_q: Union[int, list[int]], dim_k: Union[int, list[int]], n_queries: int = 32, n_keys: int = 128, compute_mask: bool = True, ) -> tuple[Union[torch.Tensor, list[torch.Tensor]]]: """Rearrange q/k into blocked tensors for local operations. Args: q (torch.Tensor): query tensor. Could be a tensor or a list of tensors. [..., n_q, ...] (n_q is at dimension dim_q) k (torch.Tensor | List[torch.Tensor]): key tensor. Could be a tensor or a list of tensors. [..., n_k, ...] (n_k is at dimension dim_k) dim_q (int): along which dimension to build the trunks. Could be an int or a list of int. dim_k (int): along which dimension to build the trunks. Could be an int or a list of int. n_queries (int, optional): local window size of query tensor. n_keys (int, optional): local window size of key/value tensor. Returns: tuple[Union[torch.Tensor, list[torch.Tensor]]]: q_trunked: torch.Tensor or list of tensors. Same as the input type. [..., n_trunks, n_queries, ...] k_trunked: torch.Tensor or list of tensors. Same as the input type. [..., n_trunks, n_keys, ...] padding_info (dict): mask_trunked: torch.Tensor [n_trunks, n_queries, n_keys] q_pad: query padded dimension """ assert n_keys >= n_queries assert n_queries & 0x01 == 0 assert n_keys & 0x01 == 0 def basic_checks(x, dim_x): if isinstance(x, list): x_is_list = True assert isinstance(dim_x, list) else: x_is_list = False x = [x] dim_x = [dim_x] n_x = x[0].size(dim_x[0]) for i in range(len(dim_x)): if dim_x[i] < 0: dim_x[i] = len(x[i].shape) + dim_x[i] assert x[i].size(dim_x[i]) == n_x return x, dim_x, x_is_list, n_x, len(x) q, dim_q, q_is_list, n, num_q = basic_checks(q, dim_q) k, dim_k, k_is_list, n_k, num_k = basic_checks(k, dim_k) assert n == n_k n_trunks = int(math.ceil(n / n_queries)) q_pad_length = n_trunks * n_queries - n q_new = [ pad_at_dim(q[i], dim=dim_q[i], pad_length=(0, q_pad_length)) for i in range(num_q) ] q_trunked = [ reshape_at_dim(q_new[i], dim=dim_q[i], target_shape=(n_trunks, n_queries)) for i in range(num_q) ] pad_left = (n_keys - n_queries) // 2 pad_right = int((n_trunks - 1 / 2) * n_queries + n_keys / 2 - n + 1 / 2) k_new = [ pad_at_dim(k[i], dim=dim_k[i], pad_length=(pad_left, pad_right)) for i in range(num_k) ] k_trunked = [ k_new[i].unfold(dim_k[i], size=n_keys, step=n_queries) for i in range(num_k) ] k_trunked = [ move_final_dim_to_dim(k_trunked[i], dim=dim_k[i] + 1) for i in range(num_k) ] if compute_mask: pad_mask = q[0].new_ones( *(1,) * len(q[0].shape[:-2]), n + q_pad_length, n + pad_left + pad_right, requires_grad=False, ) pad_mask[..., :n, 0:pad_left] = 0 pad_mask[..., :n, pad_left + n : :] = 0 pad_mask[..., n::, :] = 0 concat_split_data = optimized_concat_split(pad_mask, n_queries) pad_mask_trunked = ( concat_split_data.unfold( -1, n_keys, pad_mask.size(-1) + n_queries ).transpose(-2, -3) ).bool() else: pad_mask_trunked = None if not q_is_list: q_trunked = q_trunked[0] if not k_is_list: k_trunked = k_trunked[0] padding_info = { "mask_trunked": pad_mask_trunked, "q_pad": q_pad_length, "k_pad_left": pad_left, "k_pad_right": pad_right, } return q_trunked, k_trunked, padding_info def optimized_concat_split(attn_bias: torch.Tensor, n_queries: int) -> torch.Tensor: """Optimized concatenation and splitting of attention bias tensor. Args: attn_bias (torch.Tensor): The attention bias tensor. Shape: [..., D, E] n_queries (int): The number of queries in each split. Returns: torch.Tensor: The reshaped and permuted attention bias tensor. Shape: [..., n_queries, D // n_queries * E] """ D = attn_bias.size(-2) E = attn_bias.size(-1) assert D % n_queries == 0 num_splits = D // n_queries reshaped = attn_bias.reshape(*attn_bias.shape[:-2], num_splits, n_queries, E) permuted = reshaped.permute(*range(reshaped.dim() - 3), -2, -3, -1) output = permuted.reshape(*attn_bias.shape[:-2], n_queries, num_splits * E) return output def rearrange_to_dense_trunk( q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, n_queries: int, n_keys: int, attn_bias: Optional[torch.Tensor] = None, inf: float = 1e10, ) -> tuple[Union[torch.Tensor, int]]: """Rearrange q/k/v/bias into blocked tensors for local attention. Args: q (torch.Tensor): query tensor [..., n_q, d] k (torch.Tensor): key tensor [..., n_kv, d] v (torch.Tensor): value tensor [..., n_kv, d] attn_bias (torch.Tensor, optional): attention bias [..., n_q, n_kv] or None n_queries (int, optional): local window size of query tensor. n_keys (int, optional): local window size of key/value tensor. inf (float, optional): used for attention masking. Defaults to 1e10. Returns: tuple[Union[torch.Tensor, int]]: q_trunked [..., n_trunks, n_queries, d] k_trunked / v_trunked [..., n_trunks, n_keys, d] attn_bias_trunked: padded position filled with -inf [..., n_trunks, n_queries, n_keys] q_pad_length: query padded dimension """ assert n_keys >= n_queries assert n_queries & 0x01 == 0 assert n_keys & 0x01 == 0 n, d = q.shape[-2:] q_trunked, kv_trunked, padding_info = rearrange_qk_to_dense_trunk( q=q, k=[k, v], dim_q=-2, dim_k=[-2, -2], n_queries=n_queries, n_keys=n_keys, compute_mask=False, ) q_pad_length, pad_left, pad_right = ( padding_info["q_pad"], padding_info["k_pad_left"], padding_info["k_pad_right"], ) # Padded_width = n + pad_left + pad_right if attn_bias is None: attn_bias = q.new_zeros( *(1,) * len(q.shape[:-2]), n + q_pad_length, n + pad_left + pad_right ) attn_bias[..., :n, 0:pad_left] = -inf attn_bias[..., :n, pad_left + n : :] = -inf attn_bias[..., n::, :] = -inf else: attn_bias = F.pad(attn_bias, (pad_left, pad_right, 0, q_pad_length), value=-inf) concat_split_data = optimized_concat_split(attn_bias, n_queries) attn_bias_trunked = concat_split_data.unfold( -1, n_keys, attn_bias.shape[-1] + n_queries ).transpose(-2, -3) return q_trunked, kv_trunked[0], kv_trunked[1], attn_bias_trunked, q_pad_length def _local_attention( q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, n_queries: int, n_keys: int, attn_bias: Optional[torch.Tensor] = None, trunked_attn_bias: Optional[torch.Tensor] = None, inf: float = 1e10, use_efficient_implementation: bool = False, attn_weight_dropout_p: float = 0.0, inplace_safe: bool = False, chunk_size: Optional[int] = None, ) -> torch.Tensor: """Local attention Args: q (torch.Tensor): query tensor [..., Q, d] k (torch.Tensor): key tensor [..., K, d] v (torch.Tensor): value tensor [..., K, d] n_queries (int): local window size of query. n_keys (int): local window size of key/value. attn_bias (torch.Tensor, optional): the input biases for attention. Defaults to None. [..., Q, K] trunked_attn_bias (torch.Tensor, optional): the input biases where shape has been rearranged to dense trunks. Defaults to None. [..., n_trunks, n_queries, n_keys] inf (float): inf number used for attention bias. Defaults to 1e10. use_efficient_implementation (bool): whether to use the torch.nn.functional.scaled_dot_product_attention, Defaults to False. attn_weight_dropout_p (float): Dropout probability; if greater than 0.0, dropout is applied, Defaults to 0.0. Returns: torch.Tensor: standard attention output [..., Q, d] """ assert q.shape == k.shape == v.shape # local attention doesn't make sense if Q != K # Prepare for attention qkv, q: [..., n_trunks, n_queries, d], kv: [..., n_trunks, n_keys, d] # Rerrange to dense trunks # q: [*, n, d] -> [*, n_trunks, n_queries, d] # kv: [*, n, d] -> [*, n_trunks, n_keys, d] # attn_bias: [*, n, d] -> [*, n_trunks, n_queries, n_keys] q_trunked, k_trunked, v_trunked, attn_bias_trunked, q_pad_length = ( rearrange_to_dense_trunk( q=q, k=k, v=v, n_queries=n_queries, n_keys=n_keys, attn_bias=attn_bias, inf=inf, ) ) # Apply attention # [..., n_trunks, n_queries, d] if trunked_attn_bias is not None: attn_bias_trunked = attn_bias_trunked + trunked_attn_bias if chunk_size is not None: attn_inputs = { "q": q_trunked, "k": k_trunked, "v": v_trunked, "attn_bias": attn_bias_trunked, } out = chunk_layer( partial( _attention, use_efficient_implementation=use_efficient_implementation, attn_weight_dropout_p=attn_weight_dropout_p, inplace_safe=inplace_safe, ), attn_inputs, chunk_size=chunk_size, no_batch_dims=len(attn_bias_trunked.shape[:-2]), _out=None, ) else: out = _attention( q=q_trunked, k=k_trunked, v=v_trunked, attn_bias=attn_bias_trunked, use_efficient_implementation=use_efficient_implementation, attn_weight_dropout_p=attn_weight_dropout_p, inplace_safe=inplace_safe, ) # Revert back to orignal shape and remove q_pad_length # [..., n_trunks, n_queries, d] -> [..., n_trunks * n_queries, d] -> [..., n, d] out = out.reshape(*out.shape[:-3], -1, out.shape[-1]) if q_pad_length > 0: out = out[..., :-q_pad_length, :] return out def create_local_attn_bias( n: int, n_queries: int, n_keys: int, inf: float = 1e10, device: torch.device = None ) -> torch.Tensor: """Create local attention bias based on query window n_queries and kv window n_keys. Args: n (int): the length of quiries n_queries (int): window size of quiries n_keys (int): window size of keys/values inf (float, optional): the inf to mask attention. Defaults to 1e10. device (torch.device, optional): cuda|cpu|None. Defaults to None. Returns: torch.Tensor: the diagonal-like global attention bias """ n_trunks = int(math.ceil(n / n_queries)) padded_n = n_trunks * n_queries attn_mask = torch.zeros(padded_n, padded_n, device=device) for block_index in range(0, n_trunks): i = block_index * n_queries j1 = max(0, n_queries * block_index - (n_keys - n_queries) // 2) j2 = n_queries * block_index + (n_queries + n_keys) // 2 attn_mask[i : i + n_queries, j1:j2] = 1.0 attn_bias = (1 - attn_mask) * -inf return attn_bias.to(device=device)[:n, :n] class Attention(nn.Module): """Standard multi-head attention Ref to openfold: https://github.com/aqlaboratory/openfold/blob/feb45a521e11af1db241a33d58fb175e207f8ce0/openfold/model/primitives.py#L340 """ def __init__( self, c_q: int, c_k: int, c_v: int, c_hidden: int, num_heads: int, gating: bool = True, q_linear_bias: bool = False, local_attention_method: str = "global_attention_with_bias", use_efficient_implementation: bool = False, attn_weight_dropout_p: float = 0.0, ) -> None: """ Args: c_q (int): Input dimension of query data c_k (int): Input dimension of key data c_v (int): Input dimension of value data c_hidden (int): Per-head hidden dimension num_heads (int): Number of attention heads gating (bool, optional): Whether the output should be gated using query data. Defaults to True. q_linear_bias (bool, optional): whether use Linear with bias as in AF3. Defaults to False. local_attention_method (str, optional): local attention method, options: - global_attention_with_bias: use full size global attention with sparse attention bias - local_cross_attention: use local cross attention to minimize computation use_efficient_implementation (bool): whether to use the torch.nn.functional.scaled_dot_product_attention, Defaults to False. attn_weight_dropout_p (float): Dropout probability; if greater than 0.0, dropout is applied, Defaults to 0.0. Notes: if use_efficient_implementation == True, torch.nn.functional.scaled_dot_product_attention will be used to compute attention efficiently There are currently three supported implementations of scaled dot product attention: 1. FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness 2. Memory-Efficient Attention 3. A PyTorch implementation defined in C++ matching the above formulation The function may call optimized kernels for improved performance when using the CUDA backend. For all other backends, the PyTorch implementation will be used.All implementations are enabled by default. Scaled dot product attention attempts to automatically select the most optimal implementation based on the inputs. """ super(Attention, self).__init__() self.c_q = c_q self.c_k = c_k self.c_v = c_v self.c_hidden = c_hidden self.num_heads = num_heads self.gating = gating self.local_attention_method = local_attention_method self.use_efficient_implementation = use_efficient_implementation self.attn_weight_dropout_p = attn_weight_dropout_p # DISCREPANCY: c_hidden is not the per-head channel dimension, as # stated in the supplement, but the overall channel dimension. if q_linear_bias: # Attention in AF3 self.linear_q = Linear( in_features=self.c_q, out_features=self.c_hidden * self.num_heads ) else: # Vanilla attention self.linear_q = LinearNoBias(self.c_q, self.c_hidden * self.num_heads) self.linear_k = LinearNoBias(self.c_k, self.c_hidden * self.num_heads) self.linear_v = LinearNoBias(self.c_v, self.c_hidden * self.num_heads) self.linear_o = LinearNoBias(self.c_hidden * self.num_heads, self.c_q) self.linear_g = None if self.gating: self.linear_g = LinearNoBias(self.c_q, self.c_hidden * self.num_heads) self.sigmoid = nn.Sigmoid() # Zero init the output layer nn.init.zeros_(self.linear_o.weight) def _prep_qkv( self, q_x: torch.Tensor, kv_x: torch.Tensor, apply_scale: bool = True ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """Prepare qkv Args: q_x (torch.Tensor): the input x for q [..., c_q] kv_x (torch.Tensor): the input x for kv [..., c_k] [..., c_v] apply_scale (bool, optional): apply scale to dot product qk. Defaults to True. Returns: tuple[torch.Tensor, torch.Tensor, torch.Tensor]: the return q/k/v # [..., H, Q/K/V, C_hidden] """ # [*, Q/K/V, H * C_hidden] q = self.linear_q(q_x) k = self.linear_k(kv_x) v = self.linear_v(kv_x) # [*, Q/K/V, H, C_hidden] q = q.view(q.shape[:-1] + (self.num_heads, -1)) k = k.view(k.shape[:-1] + (self.num_heads, -1)) v = v.view(v.shape[:-1] + (self.num_heads, -1)) # [*, H, Q/K/V, C_hidden] q = q.transpose(-2, -3) k = k.transpose(-2, -3) v = v.transpose(-2, -3) if apply_scale: q = q / math.sqrt(self.c_hidden) return q, k, v def _wrap_up(self, o: torch.Tensor, q_x: torch.Tensor) -> torch.Tensor: """ Args: o (torch.Tensor): the output of attention [..., G/Q, H, C_hidden] q_x (torch.Tensor): the input for gated g [..., Q, c_q] Returns: torch.Tensor: the output of attention """ if self.linear_g is not None: g = self.sigmoid(self.linear_g(q_x)) # [*, G/Q, H, C_hidden] g = g.view(g.shape[:-1] + (self.num_heads, -1)) o = o * g # [*, Q, H * C_hidden] o = flatten_final_dims(o, num_dims=2) # [*, Q, C_q] o = self.linear_o(o) return o def forward( self, q_x: torch.Tensor, kv_x: torch.Tensor, attn_bias: Optional[torch.Tensor] = None, trunked_attn_bias: Optional[torch.Tensor] = None, n_queries: Optional[int] = None, n_keys: Optional[int] = None, inf: Optional[float] = 1e10, inplace_safe: bool = False, chunk_size: Optional[int] = None, ) -> torch.Tensor: """ Args: q_x (torch.Tensor): the input x for q [..., Q, C_q] kv_x (torch.Tensor): the input x for k/v [..., K, C_k] attn_bias (torch.Tensor, optional): the input biases for attention. Defaults to None. [..., H, Q, K] or [..., Q, K] trunked_attn_bias (torch.Tensor, optional): the input biases where shape has been rearranged to dense trunks. Defaults to None. [..., H, n_trunks, n_queries, n_keys] or [..., n_trunks, n_queries, n_keys] n_queries (int, optional): local window size of query tensor. If not None, will perform local attention. Defaults to None. n_keys (int, optional): local window size of key tensor. Defaults to None. Returns: torch.Tensor: attention update [*, Q, C_q] """ q, k, v = self._prep_qkv(q_x=q_x, kv_x=kv_x, apply_scale=True) if attn_bias is not None: if len(attn_bias.shape) == len(q.shape): assert attn_bias.shape[:-2] == q.shape[:-2] else: assert len(attn_bias.shape) == len(q.shape) - 1 assert attn_bias.shape[:-2] == q.shape[:-3] # Expand at head dim, got shape [..., 1, Q, K] attn_bias = attn_bias.unsqueeze(dim=-3) if trunked_attn_bias is not None: # NOTE: trunked_attn_bias can only be used with "local_cross_attention" method assert n_queries and n_keys assert self.local_attention_method == "local_cross_attention" if len(trunked_attn_bias.shape) == len(q.shape) + 1: assert trunked_attn_bias.shape[:-3] == q.shape[:-2] else: assert len(trunked_attn_bias.shape) == len(q.shape) # Expand at head dim, got shape [..., 1, n_trunks, n_queries, n_keys] trunked_attn_bias = trunked_attn_bias.unsqueeze(dim=-4) if n_queries and n_keys: if self.local_attention_method == "global_attention_with_bias": local_attn_bias = create_local_attn_bias( q.shape[-2], n_queries, n_keys, inf=inf, device=q.device ) # Expand to same shape as attn_bias local_attn_bias = local_attn_bias.reshape( (1,) * (len(q.shape[:-2])) + local_attn_bias.shape ) if attn_bias is not None: if inplace_safe: local_attn_bias += attn_bias else: local_attn_bias = local_attn_bias + attn_bias o = _attention( q=q, k=k, v=v, attn_bias=local_attn_bias, use_efficient_implementation=self.use_efficient_implementation, attn_weight_dropout_p=self.attn_weight_dropout_p, inplace_safe=inplace_safe, ) elif self.local_attention_method == "local_cross_attention": o = _local_attention( q=q, k=k, v=v, n_queries=n_queries, n_keys=n_keys, attn_bias=attn_bias, trunked_attn_bias=trunked_attn_bias, inf=inf, use_efficient_implementation=self.use_efficient_implementation, attn_weight_dropout_p=self.attn_weight_dropout_p, inplace_safe=inplace_safe, chunk_size=chunk_size, ) else: raise ValueError( f"Invalid local attention method: {self.local_attention_method}" ) else: o = _attention( q=q, k=k, v=v, attn_bias=attn_bias, use_efficient_implementation=self.use_efficient_implementation, attn_weight_dropout_p=self.attn_weight_dropout_p, inplace_safe=inplace_safe, ) # [*, H, Q, C_hidden] o = o.transpose(-2, -3) # o: [*, Q, H, C_hidden] o = self._wrap_up(o, q_x) # q_x: [*, Q, c_q] return o def gather_pair_embedding_in_dense_trunk( x: torch.Tensor, idx_q: torch.Tensor, idx_k: torch.Tensor ): """ Selectively gather elements from a tensor using two sets of indices. x: [..., N_token, N_token, d] idx_q: [N_b, N_q] idx_k: [N_b, N_k] Return: y: [..., N_b, N_q, N_k, d] where y[..., b, i, j, :] = x[..., idx_q[b, i], idx_k[b, j], :] """ idx_q = idx_q.long() idx_k = idx_k.long() assert len(idx_q.shape) == len(idx_k.shape) == 2 # Get the shape parameters N_b, N_q = idx_q.shape N_k = idx_k.shape[1] # Expand idx_q and idx_k to match the shape required for advanced indexing idx_q_expanded = idx_q.unsqueeze(-1).expand(-1, -1, N_k) idx_k_expanded = idx_k.unsqueeze(1).expand(-1, N_q, -1) # Use advanced indexing to gather the desired elements y = x[..., idx_q_expanded, idx_k_expanded, :] return y def broadcast_token_to_local_atom_pair( z_token: torch.Tensor, atom_to_token_idx: torch.Tensor, n_queries: int, n_keys: int, compute_mask: bool = True, ) -> torch.Tensor: """Broadcast token pair embedding to atom pair embedding Args: z_token (torch.Tensor): token pair embedding [..., N_token, N_token, d] atom_to_token_idx (torch.Tensor): map atom idx to token idx [N_atom] Returns: z_gathered_blocked (torch.Tensor): atom pair embedding, with local blocked shape [..., n_trunks, n_queries, n_keys, d] pad_mask (torch.Tensor): [n_trunks, n_queries, n_keys] q_pad_length (int) """ # [N_atom] -> [n_trunks, n_queries] and [n_trunks, n_keys] atom_to_token_idx_q, atom_to_token_idx_k, pad_info = rearrange_qk_to_dense_trunk( atom_to_token_idx, atom_to_token_idx, dim_q=-1, dim_k=-1, n_queries=n_queries, n_keys=n_keys, compute_mask=compute_mask, ) z_gathered_blocked = gather_pair_embedding_in_dense_trunk( z_token, idx_q=atom_to_token_idx_q, idx_k=atom_to_token_idx_k ) return z_gathered_blocked, pad_info