# Copyright 2021 AlQuraishi Laboratory # Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partialmethod from typing import Optional from abc import ABC, abstractmethod import torch import torch.nn as nn from protenix.openfold_local.model.primitives import Linear, LayerNorm from protenix.openfold_local.utils.precision_utils import is_fp16_enabled from protenix.openfold_local.utils.tensor_utils import add, permute_final_dims class BaseTriangleMultiplicativeUpdate(nn.Module, ABC): """ Implements Algorithms 11 and 12. """ @abstractmethod def __init__(self, c_z, c_hidden, _outgoing): """ Args: c_z: Input channel dimension c: Hidden channel dimension """ super(BaseTriangleMultiplicativeUpdate, self).__init__() self.c_z = c_z self.c_hidden = c_hidden self._outgoing = _outgoing self.linear_g = Linear(self.c_z, self.c_z, init="gating") self.linear_z = Linear(self.c_hidden, self.c_z, init="final") self.layer_norm_in = LayerNorm(self.c_z) self.layer_norm_out = LayerNorm(self.c_hidden) self.sigmoid = nn.Sigmoid() def _combine_projections( self, a: torch.Tensor, b: torch.Tensor, _inplace_chunk_size: Optional[int] = None, ) -> torch.Tensor: if self._outgoing: a = permute_final_dims(a, (2, 0, 1)) b = permute_final_dims(b, (2, 1, 0)) else: a = permute_final_dims(a, (2, 1, 0)) b = permute_final_dims(b, (2, 0, 1)) if _inplace_chunk_size is not None: # To be replaced by torch vmap for i in range(0, a.shape[-3], _inplace_chunk_size): a_chunk = a[..., i : i + _inplace_chunk_size, :, :] b_chunk = b[..., i : i + _inplace_chunk_size, :, :] a[..., i : i + _inplace_chunk_size, :, :] = torch.matmul( a_chunk, b_chunk, ) p = a else: p = torch.matmul(a, b) return permute_final_dims(p, (1, 2, 0)) @abstractmethod def forward( self, z: torch.Tensor, mask: Optional[torch.Tensor] = None, inplace_safe: bool = False, _add_with_inplace: bool = False, ) -> torch.Tensor: """ Args: x: [*, N_res, N_res, C_z] input tensor mask: [*, N_res, N_res] input mask Returns: [*, N_res, N_res, C_z] output tensor """ pass class TriangleMultiplicativeUpdate(BaseTriangleMultiplicativeUpdate): """ Implements Algorithms 11 and 12. """ def __init__(self, c_z, c_hidden, _outgoing=True): """ Args: c_z: Input channel dimension c: Hidden channel dimension """ super(TriangleMultiplicativeUpdate, self).__init__( c_z=c_z, c_hidden=c_hidden, _outgoing=_outgoing ) self.linear_a_p = Linear(self.c_z, self.c_hidden) self.linear_a_g = Linear(self.c_z, self.c_hidden, init="gating") self.linear_b_p = Linear(self.c_z, self.c_hidden) self.linear_b_g = Linear(self.c_z, self.c_hidden, init="gating") def _inference_forward( self, z: torch.Tensor, mask: Optional[torch.Tensor] = None, inplace_chunk_size: Optional[int] = None, with_add: bool = True, ): """ Args: z: A [*, N, N, C_z] pair representation mask: A [*, N, N] pair mask inplace_chunk_size: Size of chunks used in the main computation. Increase to trade memory for speed. with_add: If True, z is overwritten with (z + update). Otherwise, it is overwritten with (update). Returns: A reference to the overwritten z More memory-efficient, inference-only version of the forward function. Uses in-place operations, fusion of the addition that happens after this module in the Evoformer, a smidge of recomputation, and a cache of overwritten values to lower peak memory consumption of this module from 5x the size of the input tensor z to 2.5x its size. Useful for inference on extremely long sequences. It works as follows. We will make reference to variables used in the default forward implementation below. Naively, triangle multiplication attention requires the manifestation of 5 tensors the size of z: 1) z, the "square" input tensor, 2) a, the first projection of z, 3) b, the second projection of b, 4) g, a z-sized mask, and 5) a z-sized tensor for intermediate computations. For large N, this is prohibitively expensive; for N=4000, for example, z is more than 8GB alone. To avoid this problem, we compute b, g, and all intermediate tensors in small chunks, noting that the chunks required to compute a chunk of the output depend only on the tensor a and corresponding vertical and horizontal chunks of z. This suggests an algorithm that loops over pairs of chunks of z: hereafter "columns" and "rows" of z, even though each "column" and "row" in fact contains inplace_chunk_size contiguous true columns and rows of z. Writing output chunks to a new tensor would bring total memory consumption down to 3x the size of z. However, more memory can be saved by writing output chunks directly to z in-place. WLOG, we choose to write output chunks vertically, overwriting the ith "column" of z at the end of the ith iteration of the main loop. Despite this overwriting, the ith column is always one column ahead of previously overwritten columns and can be recovered directly from z. After the first iteration, however, the ith row of z is always at least partially overwritten. For this reason, we introduce the z-cache, a tensor one-half the size of z. The z-cache initially contains the left half (2nd and 3rd quadrants) of z. For 0 < i < N/2, the missing left part of the ith row of z is recovered from this cache at the beginning of the ith iteration. Once i exceeds n/2, the cache is "reoriented" to encompass the 3rd and 4th quadrants of z instead. Though the 3rd quadrant of the original z is entirely overwritten at this point, it can be recovered from the z-cache itself. Thereafter, the ith row of z can be recovered in its entirety from the reoriented z-cache. After the final iteration, z has been completely overwritten and contains the triangular multiplicative update. If with_add is True, it instead contains the sum of z and the triangular multiplicative update. In either case, peak memory consumption is just 2.5x the size of z, disregarding memory used for chunks and other small variables. """ if mask is None: mask = z.new_ones(z.shape[:-1]) mask = mask.unsqueeze(-1) def compute_projection_helper(pair, mask, a=True): if a: linear_g = self.linear_a_g linear_p = self.linear_a_p else: linear_g = self.linear_b_g linear_p = self.linear_b_p pair = self.layer_norm_in(pair) p = linear_g(pair) p.sigmoid_() p *= linear_p(pair) p *= mask p = permute_final_dims(p, (2, 0, 1)) return p def compute_projection(pair, mask, a=True, chunked=True): need_transpose = self._outgoing ^ a if not chunked: p = compute_projection_helper(pair, mask, a) if need_transpose: p = p.transpose(-1, -2) else: # This computation is chunked so as not to exceed our 2.5x # budget with a large intermediate tensor linear_g = self.linear_a_g if a else self.linear_b_g c = linear_g.bias.shape[-1] out_shape = pair.shape[:-3] + (c,) + pair.shape[-3:-1] p = pair.new_zeros(out_shape) for i in range(0, pair.shape[-3], inplace_chunk_size): pair_chunk = pair[..., i : i + inplace_chunk_size, :, :] mask_chunk = mask[..., i : i + inplace_chunk_size, :, :] pair_chunk = compute_projection_helper( pair[..., i : i + inplace_chunk_size, :, :], mask[..., i : i + inplace_chunk_size, :, :], a, ) if need_transpose: pair_chunk = pair_chunk.transpose(-1, -2) p[..., i : i + inplace_chunk_size] = pair_chunk else: p[..., i : i + inplace_chunk_size, :] = pair_chunk del pair_chunk return p # We start by fully manifesting a. In addition to the input, this # brings total memory consumption to 2x z (disregarding size of chunks) # [*, N, N, c] a = compute_projection(z, mask, True, chunked=True) if inplace_chunk_size is not None: n = a.shape[-1] half_n = n // 2 + n % 2 row_dim = -3 col_dim = -2 b_chunk_dim = row_dim if self._outgoing else col_dim def empty_slicer(t): return [slice(None) for _ in t.shape] def slice_tensor(t, start, end, dim): # Slices start:end from the dim dimension of t s = empty_slicer(t) s[dim] = slice(start, end) return t[s] def flip_z_cache_(z_cache, z): # "Reorient" the z_cache (see below), filling it with quadrants # 3---recovered from the z_cache---and 4---recovered from z--- # of the input tensor z. quadrant_3 = slice_tensor(z_cache, half_n, None, row_dim) z_cache = z_cache.transpose(row_dim, col_dim) # If n is odd, we need to shrink the z_cache by one row z_cache = z_cache[..., : (n // 2), :, :] # Move the 3rd quadrant of z into the first_half_slicer = empty_slicer(z_cache) first_half_slicer[col_dim] = slice(0, half_n) z_cache[first_half_slicer] = quadrant_3 # Get the fourth quadrant of z quadrant_4 = slice_tensor(z, half_n, None, row_dim) quadrant_4 = slice_tensor(quadrant_4, half_n, None, col_dim) # Insert said quadrant into the rotated z-cache quadrant_3_slicer = empty_slicer(z_cache) quadrant_3_slicer[col_dim] = slice(half_n, None) z_cache[quadrant_3_slicer] = quadrant_4 return z_cache # Initialize the z cache to the left half of z. z_cache_shape = list(z.shape) z_cache_shape[col_dim] = half_n z_cache = z.new_zeros(z_cache_shape) z_cache_slicer = empty_slicer(z_cache) z_cache_slicer[col_dim] = slice(0, half_n) z_cache.copy_(z[z_cache_slicer]) z_cache_rotated = False # We need to reorient the z-cache at the halfway point, and we # don't want a single chunk to straddle that point. We contract one # of the chunks in the middle to address that problem. i_range = list(range(0, half_n, inplace_chunk_size)) initial_offsets = [ i_2 - i_1 for i_1, i_2 in zip(i_range, i_range[1:] + [half_n]) ] after_half = list(range(half_n, n, inplace_chunk_size)) after_half_offsets = [inplace_chunk_size for _ in after_half] combined_range_with_offsets = zip( i_range + after_half, initial_offsets + after_half_offsets ) for i, offset in combined_range_with_offsets: if not z_cache_rotated and i >= half_n: z_cache = flip_z_cache_(z_cache, z) z_cache_rotated = True z_chunk_b = slice_tensor( z, i, i + offset, b_chunk_dim, ) mask_chunk = slice_tensor( mask, i, i + offset, b_chunk_dim, ) z_chunk_b = z_chunk_b.clone() if b_chunk_dim == col_dim: z_chunk_b = slice_tensor(z, i, i + offset, col_dim) else: # b_chunk_dim == row_dim # In this case, the b-dimension (b_chunk_dim) is partially # overwritten at the end of each iteration. We need to # restore the missing component from the z-cache. if not z_cache_rotated: z_chunk_slicer = empty_slicer(z_chunk_b) z_chunk_slicer[col_dim] = slice(0, half_n) z_chunk_b[z_chunk_slicer] = slice_tensor( z_cache, i, i + offset, row_dim, ) else: z_cache_offset = i - half_n z_chunk_b = slice_tensor( z_cache, z_cache_offset, z_cache_offset + offset, row_dim ) b_chunk = compute_projection( z_chunk_b, mask_chunk, a=False, chunked=False ) del z_chunk_b x_chunk = torch.matmul( a, b_chunk, ) x_chunk = permute_final_dims(x_chunk, (1, 2, 0)) x_chunk = self.layer_norm_out(x_chunk) x_chunk = self.linear_z(x_chunk) # The g dimension (col_dim) is parallel to and ahead of the # overwrites in z. We can extract the g chunk normally. z_chunk_g = slice_tensor(z, i, i + offset, col_dim) g_chunk = self.linear_g(self.layer_norm_in(z_chunk_g)) g_chunk.sigmoid_() del z_chunk_g x_chunk *= g_chunk # Write the columns into z in-place z_slicer = empty_slicer(z) z_slicer[col_dim] = slice(i, i + offset) if with_add: z[z_slicer] += x_chunk else: z[z_slicer] = x_chunk else: b = compute_projection(z, mask, False, False) x = torch.matmul(a, b) x = self.layer_norm_out(x) x = self.linear_z(x) g = self.linear_g(z) g.sigmoid_() x *= g if with_add: z += x else: z = x return z def forward( self, z: torch.Tensor, mask: Optional[torch.Tensor] = None, inplace_safe: bool = False, _add_with_inplace: bool = False, _inplace_chunk_size: Optional[int] = 256, ) -> torch.Tensor: """ Args: x: [*, N_res, N_res, C_z] input tensor mask: [*, N_res, N_res] input mask Returns: [*, N_res, N_res, C_z] output tensor """ if inplace_safe: x = self._inference_forward( z, mask, inplace_chunk_size=_inplace_chunk_size, with_add=_add_with_inplace, ) return x if mask is None: mask = z.new_ones(z.shape[:-1]) mask = mask.unsqueeze(-1) z = self.layer_norm_in(z) a = mask a = a * self.sigmoid(self.linear_a_g(z)) a = a * self.linear_a_p(z) b = mask b = b * self.sigmoid(self.linear_b_g(z)) b = b * self.linear_b_p(z) # Prevents overflow of torch.matmul in combine projections in # reduced-precision modes a_std = a.std() b_std = b.std() if is_fp16_enabled() and a_std != 0.0 and b_std != 0.0: a = a / a.std() b = b / b.std() if is_fp16_enabled(): with torch.cuda.amp.autocast(enabled=False): x = self._combine_projections(a.float(), b.float()) else: x = self._combine_projections(a, b) del a, b x = self.layer_norm_out(x) x = self.linear_z(x) g = self.sigmoid(self.linear_g(z)) x = x * g return x class TriangleMultiplicationOutgoing(TriangleMultiplicativeUpdate): """ Implements Algorithm 11. """ __init__ = partialmethod(TriangleMultiplicativeUpdate.__init__, _outgoing=True) class TriangleMultiplicationIncoming(TriangleMultiplicativeUpdate): """ Implements Algorithm 12. """ __init__ = partialmethod(TriangleMultiplicativeUpdate.__init__, _outgoing=False) class FusedTriangleMultiplicativeUpdate(BaseTriangleMultiplicativeUpdate): """ Implements Algorithms 11 and 12. """ def __init__(self, c_z, c_hidden, _outgoing=True): """ Args: c_z: Input channel dimension c: Hidden channel dimension """ super(FusedTriangleMultiplicativeUpdate, self).__init__( c_z=c_z, c_hidden=c_hidden, _outgoing=_outgoing ) self.linear_ab_p = Linear(self.c_z, self.c_hidden * 2) self.linear_ab_g = Linear(self.c_z, self.c_hidden * 2, init="gating") def _inference_forward( self, z: torch.Tensor, mask: Optional[torch.Tensor] = None, _inplace_chunk_size: Optional[int] = None, with_add: bool = True, ): """ Args: z: A [*, N, N, C_z] pair representation mask: A [*, N, N] pair mask with_add: If True, z is overwritten with (z + update). Otherwise, it is overwritten with (update). Returns: A reference to the overwritten z """ if mask is None: mask = z.new_ones(z.shape[:-1]) mask = mask.unsqueeze(-1) def compute_projection_helper(pair, mask): p = self.linear_ab_g(pair) p.sigmoid_() p *= self.linear_ab_p(pair) p *= mask return p def compute_projection(pair, mask): p = compute_projection_helper(pair, mask) left = p[..., : self.c_hidden] right = p[..., self.c_hidden :] return left, right z_norm_in = self.layer_norm_in(z) a, b = compute_projection(z_norm_in, mask) x = self._combine_projections(a, b, _inplace_chunk_size=_inplace_chunk_size) x = self.layer_norm_out(x) x = self.linear_z(x) g = self.linear_g(z_norm_in) g.sigmoid_() x *= g if with_add: z += x else: z = x return z def forward( self, z: torch.Tensor, mask: Optional[torch.Tensor] = None, inplace_safe: bool = False, _add_with_inplace: bool = False, _inplace_chunk_size: Optional[int] = 256, ) -> torch.Tensor: """ Args: x: [*, N_res, N_res, C_z] input tensor mask: [*, N_res, N_res] input mask Returns: [*, N_res, N_res, C_z] output tensor """ if inplace_safe: x = self._inference_forward( z, mask, _inplace_chunk_size=_inplace_chunk_size, with_add=_add_with_inplace, ) return x if mask is None: mask = z.new_ones(z.shape[:-1]) mask = mask.unsqueeze(-1) z = self.layer_norm_in(z) ab = mask ab = ab * self.sigmoid(self.linear_ab_g(z)) ab = ab * self.linear_ab_p(z) a = ab[..., : self.c_hidden] b = ab[..., self.c_hidden :] # Prevents overflow of torch.matmul in combine projections in # reduced-precision modes a_std = a.std() b_std = b.std() if is_fp16_enabled() and a_std != 0.0 and b_std != 0.0: a = a / a.std() b = b / b.std() if is_fp16_enabled(): with torch.cuda.amp.autocast(enabled=False): x = self._combine_projections(a.float(), b.float()) else: x = self._combine_projections(a, b) del a, b x = self.layer_norm_out(x) x = self.linear_z(x) g = self.sigmoid(self.linear_g(z)) x = x * g return x class FusedTriangleMultiplicationOutgoing(FusedTriangleMultiplicativeUpdate): """ Implements Algorithm 11. """ __init__ = partialmethod(FusedTriangleMultiplicativeUpdate.__init__, _outgoing=True) class FusedTriangleMultiplicationIncoming(FusedTriangleMultiplicativeUpdate): """ Implements Algorithm 12. """ __init__ = partialmethod( FusedTriangleMultiplicativeUpdate.__init__, _outgoing=False )