# Copyright 2024 ByteDance and/or its affiliates. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import time import torch class Checker: @staticmethod def is_permutation(x: torch.Tensor): """ Checks if the input tensor `x` is a permutation of integers from 0 to N-1. Args: x (torch.Tensor): A 1D tensor of size [N]. """ assert x.dim() == 1 N = x.size(0) assert torch.equal(torch.sort(x)[0], torch.arange(N, device=x.device)) @staticmethod def are_permutations(x: torch.Tensor, dim=-1): """ Checks if slices along the specified dimension in `x` are permutations of integers from 0 to N-1. Args: x (torch.Tensor): A tensor with any number of dimensions, containing slices of size N along `dim`. dim (int, optional): The dimension along which to check for permutations. Defaults to -1. """ assert x.dim() > 0 N = x.size(dim) # Create a view of x that moves the specified dimension to -1 x = x.transpose(dim, -1).contiguous() x = x.reshape(-1, N) expected = torch.arange(N, device=x.device) for i in range(x.size(0)): Checker.is_permutation(x[i]) @staticmethod def contains_identity(x: torch.Tensor, dim=-1): """ Check if x contains the identity permutation Args: x (torch.Tensor): A tensor with any number of dimensions, containing slices of size N along `dim`. dim (int, optional): The dimension along which to check for permutations. Defaults to -1. """ assert x.dim() > 0 N = x.size(dim) # Create a view of x that moves the specified dimension to -1 x = x.transpose(dim, -1).contiguous() x = x.reshape(-1, N) expected = torch.arange(N, device=x.device).unsqueeze(dim=0) assert (x == expected).all(dim=-1).any() @staticmethod def not_contain_identity(x: torch.Tensor, dim=-1): """ Check if x does not contain the identity permutation Args: x (torch.Tensor): A tensor with any number of dimensions, containing slices of size N along `dim`. dim (int, optional): The dimension along which to check for permutations. Defaults to -1. """ assert x.dim() > 0 N = x.size(dim) # Create a view of x that moves the specified dimension to -1 x = x.transpose(dim, -1).contiguous() x = x.reshape(-1, N) expected = torch.arange(N, device=x.device).unsqueeze(dim=0) assert not (x == expected).all(dim=-1).any() @staticmethod def batch_permute(perm: torch.Tensor, x: torch.Tensor, x_permuted: torch.Tensor): """ Args: perm (torch.Tensor): [..., N] x (torch.Tensor): [N, batch_dims_x] x_permuted (torch.Tensor): [..., N, batch_dims_x] """ batch_shape = perm.shape[:-1] N = perm.size(-1) assert x.size(0) == N perm = perm.view(-1, N) permuted_x = [x[perm[i]] for i in range(len(perm))] permuted_x = torch.stack(permuted_x, dim=0) # [-1, N, batch_dims_x] target_shape = batch_shape + (N,) + x.shape[1:] assert torch.allclose(permuted_x.reshape(target_shape), x_permuted) def save_permutation_error(data, error_dir: str = None, max_cases: int = 50): """ Saves the permutation error data to a specified directory. Args: data: The data to be saved. error_dir (str): The directory where the error data should be saved. max_cases (int): The maximum number of error cases to save. Raises: Exception: If an error occurs while saving the data, the exception is caught and printed. """ if error_dir is None: return # error_dir = os.path.join(self.error_dir, dir_name) os.makedirs(error_dir, exist_ok=True) if len(os.listdir(error_dir)) >= max_cases: # Only record the first {max_cases} error cases for debug return filename = "T_" + time.strftime("%Y%m%d_%H%M%S") + ".pt" fpath = os.path.join(error_dir, filename) if not os.path.exists(fpath): try: torch.save(data, fpath) except Exception as e: print(f"Exception occurrs in save_permutation_error: {e}")