Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,43 +1,3 @@
|
|
1 |
import gradio as gr
|
2 |
-
import torch
|
3 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
4 |
|
5 |
-
|
6 |
-
model_name = "deepseek-ai/DeepSeek-R1-Distill-Llama-8B"
|
7 |
-
|
8 |
-
# Load tokenizer
|
9 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
10 |
-
|
11 |
-
# Fix quantization issue by using 4-bit
|
12 |
-
quantization_config = BitsAndBytesConfig(
|
13 |
-
load_in_4bit=True, # Use 4-bit instead of 8-bit
|
14 |
-
bnb_4bit_compute_dtype=torch.float16, # Use FP16 for better compatibility
|
15 |
-
bnb_4bit_use_double_quant=True, # Enable double quantization for efficiency
|
16 |
-
)
|
17 |
-
|
18 |
-
# Load model with optimized quantization
|
19 |
-
model = AutoModelForCausalLM.from_pretrained(
|
20 |
-
model_name,
|
21 |
-
device_map="auto",
|
22 |
-
quantization_config=quantization_config,
|
23 |
-
trust_remote_code=True
|
24 |
-
)
|
25 |
-
|
26 |
-
# Define text generation function
|
27 |
-
def generate_response(prompt):
|
28 |
-
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
29 |
-
with torch.no_grad():
|
30 |
-
output = model.generate(**inputs, max_length=150)
|
31 |
-
return tokenizer.decode(output[0], skip_special_tokens=True)
|
32 |
-
|
33 |
-
# Set up Gradio UI
|
34 |
-
interface = gr.Interface(
|
35 |
-
fn=generate_response,
|
36 |
-
inputs=gr.Textbox(label="Enter your prompt"),
|
37 |
-
outputs=gr.Textbox(label="AI Response"),
|
38 |
-
title="DeepSeek-R1 Distill LLaMA Chatbot",
|
39 |
-
description="Enter a prompt and receive a response from DeepSeek-R1-Distill-Llama-8B."
|
40 |
-
)
|
41 |
-
|
42 |
-
# Launch the app
|
43 |
-
interface.launch()
|
|
|
1 |
import gradio as gr
|
|
|
|
|
2 |
|
3 |
+
gr.load("models/deepseek-ai/DeepSeek-R1").launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|