therapx / app.py
ZamiSanj's picture
Update app.py
cda715f verified
import torch
from datasets import load_dataset
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TrainingArguments, GenerationConfig
from peft import LoraConfig, get_peft_model, PeftConfig, PeftModel, prepare_model_for_kbit_training
from trl import SFTTrainer
import warnings
warnings.filterwarnings("ignore")
data = load_dataset("heliosbrahma/mental_health_chatbot_dataset")
model_name = "vilsonrodrigues/falcon-7b-instruct-sharded" # sharded falcon-7b model
bnb_config = BitsAndBytesConfig(
load_in_4bit=True, # load model in 4-bit precision
bnb_4bit_quant_type="nf4", # pre-trained model should be quantized in 4-bit NF format
bnb_4bit_use_double_quant=True, # Using double quantization as mentioned in QLoRA paper
bnb_4bit_compute_dtype=torch.bf16, # During computation, pre-trained model should be loaded in BF16 format
)
model = AutoModelForCausalLM.from_pretrained(
model_name,
quantization_config=bnb_config, # Use bitsandbytes config
device_map="auto", # Specifying device_map="auto" so that HF Accelerate will determine which GPU to put each layer of the model on
trust_remote_code=True, # Set trust_remote_code=True to use falcon-7b model with custom code
)
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) # Set trust_remote_code=True
tokenizer.pad_token = tokenizer.eos_token # Setting pad_token same as eos_token
model = prepare_model_for_kbit_training(model)
lora_alpha = 32 # scaling factor for the weight matrices
lora_dropout = 0.05 # dropout probability of the LoRA layers
lora_rank = 16 # dimension of the low-rank matrices
peft_config = LoraConfig(
lora_alpha=lora_alpha,
lora_dropout=lora_dropout,
r=lora_rank,
bias="none", # setting to 'none' for only training weight params instead of biases
task_type="CAUSAL_LM",
target_modules=[ # Setting names of modules in falcon-7b model that we want to apply LoRA to
"query_key_value",
"dense",
"dense_h_to_4h",
"dense_4h_to_h",
]
)
peft_model = get_peft_model(model, peft_config)
output_dir = "./falcon-7b-sharded-fp16-finetuned-mental-health-conversational"
per_device_train_batch_size = 16 # reduce batch size by 2x if out-of-memory error
gradient_accumulation_steps = 4 # increase gradient accumulation steps by 2x if batch size is reduced
optim = "paged_adamw_32bit" # activates the paging for better memory management
save_strategy="steps" # checkpoint save strategy to adopt during training
save_steps = 10 # number of updates steps before two checkpoint saves
logging_steps = 10 # number of update steps between two logs if logging_strategy="steps"
learning_rate = 2e-4 # learning rate for AdamW optimizer
max_grad_norm = 0.3 # maximum gradient norm (for gradient clipping)
max_steps = 70 # training will happen for 70 steps
warmup_ratio = 0.03 # number of steps used for a linear warmup from 0 to learning_rate
lr_scheduler_type = "cosine" # learning rate scheduler
training_arguments = TrainingArguments(
output_dir=output_dir,
per_device_train_batch_size=per_device_train_batch_size,
gradient_accumulation_steps=gradient_accumulation_steps,
optim=optim,
save_steps=save_steps,
logging_steps=logging_steps,
learning_rate=learning_rate,
bf16=True,
max_grad_norm=max_grad_norm,
max_steps=max_steps,
warmup_ratio=warmup_ratio,
group_by_length=True,
lr_scheduler_type=lr_scheduler_type,
push_to_hub=True,
)
trainer = SFTTrainer(
model=peft_model,
train_dataset=data['train'],
peft_config=peft_config,
dataset_text_field="text",
ac=1024,
tokenizer=tokenizer,
args=training_arguments,
)
# upcasting the layer norms in torch.bfloat16 for more stable training
for name, module in trainer.model.named_modules():
if "norm" in name:
module = module.to(torch.bfloat16)
peft_model.config.use_cache = False
trainer.train()
trainer.push_to_hub("therapx")
# import gradio as gr
# import torch
# import re, os, warnings
# from langchain import PromptTemplate, LLMChain
# from langchain.llms.base import LLM
# from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, GenerationConfig
# from peft import LoraConfig, get_peft_model, PeftConfig, PeftModel
# warnings.filterwarnings("ignore")
# def init_model_and_tokenizer(PEFT_MODEL):
# config = PeftConfig.from_pretrained(PEFT_MODEL)
# bnb_config = BitsAndBytesConfig(
# load_in_4bit=True,
# bnb_4bit_quant_type="nf4",
# bnb_4bit_use_double_quant=True,
# bnb_4bit_compute_dtype=torch.float16,
# )
# peft_base_model = AutoModelForCausalLM.from_pretrained(
# config.base_model_name_or_path,
# return_dict=True,
# quantization_config=bnb_config,
# device_map="auto",
# trust_remote_code=True,
# )
# peft_model = PeftModel.from_pretrained(peft_base_model, PEFT_MODEL)
# peft_tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
# peft_tokenizer.pad_token = peft_tokenizer.eos_token
# return peft_model, peft_tokenizer
# def init_llm_chain(peft_model, peft_tokenizer):
# class CustomLLM(LLM):
# def _call(self, prompt: str, stop=None, run_manager=None) -> str:
# device = "cuda:0"
# peft_encoding = peft_tokenizer(prompt, return_tensors="pt").to(device)
# peft_outputs = peft_model.generate(input_ids=peft_encoding.input_ids, generation_config=GenerationConfig(max_new_tokens=256, pad_token_id = peft_tokenizer.eos_token_id, \
# eos_token_id = peft_tokenizer.eos_token_id, attention_mask = peft_encoding.attention_mask, \
# temperature=0.4, top_p=0.6, repetition_penalty=1.3, num_return_sequences=1,))
# peft_text_output = peft_tokenizer.decode(peft_outputs[0], skip_special_tokens=True)
# return peft_text_output
# @property
# def _llm_type(self) -> str:
# return "custom"
# llm = CustomLLM()
# template = """Answer the following question truthfully.
# If you don't know the answer, respond 'Sorry, I don't know the answer to this question.'.
# If the question is too complex, respond 'Kindly, consult a psychiatrist for further queries.'.
# Example Format:
# <HUMAN>: question here
# <ASSISTANT>: answer here
# Begin!
# <HUMAN>: {query}
# <ASSISTANT>:"""
# prompt = PromptTemplate(template=template, input_variables=["query"])
# llm_chain = LLMChain(prompt=prompt, llm=llm)
# return llm_chain
# def user(user_message, history):
# return "", history + [[user_message, None]]
# def bot(history):
# if len(history) >= 2:
# query = history[-2][0] + "\n" + history[-2][1] + "\nHere, is the next QUESTION: " + history[-1][0]
# else:
# query = history[-1][0]
# bot_message = llm_chain.run(query)
# bot_message = post_process_chat(bot_message)
# history[-1][1] = ""
# history[-1][1] += bot_message
# return history
# def post_process_chat(bot_message):
# try:
# bot_message = re.findall(r"<ASSISTANT>:.*?Begin!", bot_message, re.DOTALL)[1]
# except IndexError:
# pass
# bot_message = re.split(r'<ASSISTANT>\:?\s?', bot_message)[-1].split("Begin!")[0]
# bot_message = re.sub(r"^(.*?\.)(?=\n|$)", r"\1", bot_message, flags=re.DOTALL)
# try:
# bot_message = re.search(r"(.*\.)", bot_message, re.DOTALL).group(1)
# except AttributeError:
# pass
# bot_message = re.sub(r"\n\d.$", "", bot_message)
# bot_message = re.split(r"(Goodbye|Take care|Best Wishes)", bot_message, flags=re.IGNORECASE)[0].strip()
# bot_message = bot_message.replace("\n\n", "\n")
# return bot_message
# model = "heliosbrahma/falcon-7b-sharded-bf16-finetuned-mental-health-conversational"
# peft_model, peft_tokenizer = init_model_and_tokenizer(PEFT_MODEL = model)
# with gr.Blocks() as interface:
# gr.HTML("""<h1>Welcome to Mental Health Conversational AI</h1>""")
# gr.Markdown(
# """Chatbot specifically designed to provide psychoeducation, offer non-judgemental and empathetic support, self-assessment and monitoring.<br>
# Get instant response for any mental health related queries. If the chatbot seems you need external support, then it will respond appropriately.<br>"""
# )
# chatbot = gr.Chatbot()
# query = gr.Textbox(label="Type your query here, then press 'enter' and scroll up for response")
# clear = gr.Button(value="Clear Chat History!")
# clear.style(size="sm")
# llm_chain = init_llm_chain(peft_model, peft_tokenizer)
# query.submit(user, [query, chatbot], [query, chatbot], queue=False).then(bot, chatbot, chatbot)
# clear.click(lambda: None, None, chatbot, queue=False)
# interface.queue().launch()