some changes
Browse files- app.py +8 -15
- cheetah.jpg +0 -0
- horse.jpg +0 -0
app.py
CHANGED
@@ -5,12 +5,12 @@ import torchvision.models as models
|
|
5 |
from torchvision.transforms import v2 as transforms
|
6 |
import os
|
7 |
|
|
|
8 |
class_names = ['AI-Generated Image', "Real/Non-AI-Generated Image"]
|
9 |
|
10 |
-
#
|
11 |
-
# model = models.vit_b_16()
|
12 |
weights_path = "FaKe-ViT-B16.pth"
|
13 |
-
model = torch.load(weights_path
|
14 |
model.eval()
|
15 |
# Preprocessing the image
|
16 |
preprocess = transforms.Compose([
|
@@ -22,7 +22,6 @@ preprocess = transforms.Compose([
|
|
22 |
|
23 |
# Define the prediction function
|
24 |
def predict_image(image):
|
25 |
-
# inp = Image.fromarray(inp.astype('uint8'), 'RGB')
|
26 |
image = preprocess(image)
|
27 |
if image.shape[0] != 3:
|
28 |
image = image[:3, :, :]
|
@@ -32,8 +31,6 @@ def predict_image(image):
|
|
32 |
output1 = torch.argmax(torch.softmax(output,dim=1),dim=1).item()
|
33 |
return class_names[output1]
|
34 |
|
35 |
-
# def image_mod(image):
|
36 |
-
# return image.rotate(45)
|
37 |
|
38 |
|
39 |
demo = gr.Interface(
|
@@ -41,17 +38,13 @@ demo = gr.Interface(
|
|
41 |
gr.Image(image_mode="RGB",type="pil"),
|
42 |
"text",
|
43 |
flagging_options=["incorrect prediction"],
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
# ],
|
50 |
title="FaKe-ViT-B/16: AI-Generated Image Detection using Vision Transformer(ViT-B/16)",
|
51 |
description="This is a demo to detect AI-Generated images using Vision Transformer(ViT-B/16). Upload an image and the model will predict whether the image is AI-Generated or Real",
|
52 |
-
css=""".gr-header, .gr-text {
|
53 |
-
font-size: 20px;
|
54 |
-
}""",
|
55 |
article=" \nBased on the paper:'An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale', Alexey et al.\nDataset: 'Fake or Real competition dataset' at https://huggingface.co/datasets/mncai/Fake_or_Real_Competition_Dataset"
|
56 |
)
|
57 |
|
|
|
5 |
from torchvision.transforms import v2 as transforms
|
6 |
import os
|
7 |
|
8 |
+
# Define the class names
|
9 |
class_names = ['AI-Generated Image', "Real/Non-AI-Generated Image"]
|
10 |
|
11 |
+
# Load the model
|
|
|
12 |
weights_path = "FaKe-ViT-B16.pth"
|
13 |
+
model = torch.load(weights_path, map_location=torch.device('cpu'))
|
14 |
model.eval()
|
15 |
# Preprocessing the image
|
16 |
preprocess = transforms.Compose([
|
|
|
22 |
|
23 |
# Define the prediction function
|
24 |
def predict_image(image):
|
|
|
25 |
image = preprocess(image)
|
26 |
if image.shape[0] != 3:
|
27 |
image = image[:3, :, :]
|
|
|
31 |
output1 = torch.argmax(torch.softmax(output,dim=1),dim=1).item()
|
32 |
return class_names[output1]
|
33 |
|
|
|
|
|
34 |
|
35 |
|
36 |
demo = gr.Interface(
|
|
|
38 |
gr.Image(image_mode="RGB",type="pil"),
|
39 |
"text",
|
40 |
flagging_options=["incorrect prediction"],
|
41 |
+
examples=[
|
42 |
+
os.path.join(os.path.dirname(__file__), "images/cheetah.jpg"),
|
43 |
+
os.path.join(os.path.dirname(__file__), "images/horse.jpg"),
|
44 |
+
os.path.join(os.path.dirname(__file__), "images/astronaut.png"),
|
45 |
+
],
|
|
|
46 |
title="FaKe-ViT-B/16: AI-Generated Image Detection using Vision Transformer(ViT-B/16)",
|
47 |
description="This is a demo to detect AI-Generated images using Vision Transformer(ViT-B/16). Upload an image and the model will predict whether the image is AI-Generated or Real",
|
|
|
|
|
|
|
48 |
article=" \nBased on the paper:'An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale', Alexey et al.\nDataset: 'Fake or Real competition dataset' at https://huggingface.co/datasets/mncai/Fake_or_Real_Competition_Dataset"
|
49 |
)
|
50 |
|
cheetah.jpg
ADDED
![]() |
horse.jpg
ADDED
![]() |