File size: 7,360 Bytes
864ebc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
# :bar_chart: Benchmark



We provide <a href="https://github.com/Stability-AI/stable-virtual-camera/releases/tag/benchmark">in this release</a> (`benchmark.zip`) with the following 17 entries as a benchmark to evaluate NVS models.

We hope this will help standardize the evaluation of NVS models and facilitate fair comparison between different methods.



<table>

  <thead>

    <tr>

      <th align="center">Dataset</th>

      <th align="center">Split</th>

      <th align="center">Path</th>

      <th align="center">Content</th>

      <th align="center">Image Preprocessing</th>

      <th align="center">Image Postprocessing</th>

    </tr>

  </thead>

  <tbody>

    <tr>

      <td align="center">OmniObject3D</td>

      <td align="center"><code>S</code> (SV3D), <code>O</code> (Ours) </td>

      <td align="center"><code>omniobject3d</code></td>

      <td align="center"><code>train_test_split_*.json</code></td>

      <td align="center">center crop to 576</td>

      <td align="center">\</td>

    </tr>

    <tr>

      <td align="center">GSO</td>

      <td align="center"><code>S</code> (SV3D), <code>O</code> (Ours) </td>

      <td align="center"><code>gso</code></td>

      <td align="center"><code>train_test_split_*.json</code></td>
      <td align="center">center crop to 576</td>

      <td align="center">\</td>

    </tr>

    <tr>

      <td align="center" rowspan="4">RealEstate10K</td>

      <td align="center"><code>D</code> (4DiM) </td>

      <td align="center"><code>re10k-4dim</code></td>

      <td align="center"><code>train_test_split_*.json</code></td>

      <td align="center">center crop to 576</td>

      <td align="center">resize to 256</td>

    </tr>

    <tr>

      <td align="center"><code>R</code> (ReconFusion) </td>

      <td align="center"><code>re10k</code></td>

      <td align="center"><code>train_test_split_*.json</code></td>

      <td align="center">center crop to 576</td>

      <td align="center">\</td>

    </tr>

    <tr>

      <td align="center"><code>P</code> (pixelSplat) </td>

      <td align="center"><code>re10k-pixelsplat</code></td>

      <td align="center"><code>train_test_split_*.json</code></td>

      <td align="center">center crop to 576</td>

      <td align="center">resize to 256</td>

    </tr>

    <tr>

      <td align="center"><code>V</code> (ViewCrafter) </td>

      <td align="center"><code>re10k-viewcrafter</code></td>

      <td align="center"><code>images/*.png</code>,<code>transforms.json</code>,<code>train_test_split_*.json</code></td>

      <td align="center">resize the shortest side to 576 (<code>--L_short 576</code>)</td>

      <td align="center">center crop</td>

    </tr>

    <tr>

      <td align="center">LLFF</td>

      <td align="center"><code>R</code> (ReconFusion) </td>

      <td align="center"><code>llff</code></td>

      <td align="center"><code>train_test_split_*.json</code></td>

      <td align="center">center crop to 576</td>

      <td align="center">\</td>

    </tr>

    <tr>

      <td align="center">DTU</td>

      <td align="center"><code>R</code> (ReconFusion) </td>

      <td align="center"><code>dtu</code></td>

      <td align="center"><code>train_test_split_*.json</code></td>

      <td align="center">center crop to 576</td>

      <td align="center">\</td>

    </tr>

    <tr>

      <td align="center" rowspan="2">CO3D</td>

      <td align="center"><code>R</code> (ReconFusion) </td>

      <td align="center"><code>co3d</code></td>

      <td align="center"><code>train_test_split_*.json</code></td>

      <td align="center">center crop to 576</td>

      <td align="center">\</td>

    </tr>

    <tr>

      <td align="center"><code>V</code> (ViewCrafter) </td>

      <td align="center"><code>co3d-viewcrafter</code></td>

      <td align="center"><code>images/*.png</code>,<code>transforms.json</code>,<code>train_test_split_*.json</code></td>

      <td align="center">resize the shortest side to 576 (<code>--L_short 576</code>)</td>

      <td align="center">center crop</td>

    </tr>

    <tr>

      <td align="center" rowspan="2" >WildRGB-D</td>

      <td align="center"><code>Oₑ</code> (Ours, easy) </td>

      <td align="center"><code>wildgbd/easy</code></td>

      <td align="center"><code>train_test_split_*.json</code></td>

      <td align="center">center crop to 576</td>

      <td align="center">\</td>

    </tr>

    <tr>

      <td align="center"><code>Oₕ</code> (Ours, hard) </td>

      <td align="center"><code>wildgbd/hard</code></td>

      <td align="center"><code>train_test_split_*.json</code></td>

      <td align="center">center crop to 576</td>

      <td align="center">\</td>

    </tr>

    <tr>

      <td align="center">Mip-NeRF360</td>

      <td align="center"><code>R</code> (ReconFusion) </td>

      <td align="center"><code>mipnerf360</code></td>

      <td align="center"><code>train_test_split_*.json</code></td>

      <td align="center">center crop to 576</td>

      <td align="center">\</td>

    </tr>

    <tr>

      <td align="center" rowspan="2">DL3DV-140</td>

      <td align="center"><code>O</code> (Ours) </td>

      <td align="center"><code>dl3dv10</code></td>

      <td align="center"><code>train_test_split_*.json</code></td>

      <td align="center">center crop to 576</td>

      <td align="center">\</td>

    </tr>

    <tr>

      <td align="center"><code>L</code> (Long-LRM) </td>

      <td align="center"><code>dl3dv140</code></td>

      <td align="center"><code>train_test_split_*.json</code></td>

      <td align="center">center crop to 576</td>

      <td align="center">\</td>

    </tr>

    <tr>

      <td align="center" rowspan="2">Tanks and Temples</td>

      <td align="center"><code>V</code> (ViewCrafter) </td>

      <td align="center"><code>tnt-viewcrafter</code></td>

      <td align="center"><code>images/*.png</code>,<code>transforms.json</code>,<code>train_test_split_*.json</code></td>

      <td align="center">resize the shortest side to 576 (<code>--L_short 576</code>)</td>

      <td align="center">center crop</td>

    </tr>

    <tr>

      <td align="center"><code>L</code> (Long-LRM) </td>

      <td align="center"><code>tnt-longlrm</code></td>

      <td align="center"><code>train_test_split_*.json</code></td>

      <td align="center">center crop to 576</td>

      <td align="center">\</td>

    </tr>

  </tbody>

</table>


- For entries without `images/*.png` and `transforms.json`, we use the images from the original dataset after converting them into the `reconfusion` format, which is then parsable by `ReconfusionParser` (`seva/data_io.py`).
  Please note that during this conversion, you should sort the images by `sorted(image_paths)`, which is then directly indexable by our train/test ids. We provide in `benchmark/export_reconfusion_example.py` an example script converting an existing academic dataset into the the scene folders.
- For evaluation and benchmarking, we first conduct operations in the `Image Preprocessing` column to the model input and then operations in the `Image Postprocessing` column to the model output. The final processed samples are used for metric computation.

## Acknowledgment

We would like to thank Wangbo Yu, Aleksander Hołyński, Saurabh Saxena, and Ziwen Chen for their kind clarification on experiment settings.