Spaces:
Runtime error
Runtime error
File size: 7,360 Bytes
864ebc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
# :bar_chart: Benchmark
We provide <a href="https://github.com/Stability-AI/stable-virtual-camera/releases/tag/benchmark">in this release</a> (`benchmark.zip`) with the following 17 entries as a benchmark to evaluate NVS models.
We hope this will help standardize the evaluation of NVS models and facilitate fair comparison between different methods.
<table>
<thead>
<tr>
<th align="center">Dataset</th>
<th align="center">Split</th>
<th align="center">Path</th>
<th align="center">Content</th>
<th align="center">Image Preprocessing</th>
<th align="center">Image Postprocessing</th>
</tr>
</thead>
<tbody>
<tr>
<td align="center">OmniObject3D</td>
<td align="center"><code>S</code> (SV3D), <code>O</code> (Ours) </td>
<td align="center"><code>omniobject3d</code></td>
<td align="center"><code>train_test_split_*.json</code></td>
<td align="center">center crop to 576</td>
<td align="center">\</td>
</tr>
<tr>
<td align="center">GSO</td>
<td align="center"><code>S</code> (SV3D), <code>O</code> (Ours) </td>
<td align="center"><code>gso</code></td>
<td align="center"><code>train_test_split_*.json</code></td>
<td align="center">center crop to 576</td>
<td align="center">\</td>
</tr>
<tr>
<td align="center" rowspan="4">RealEstate10K</td>
<td align="center"><code>D</code> (4DiM) </td>
<td align="center"><code>re10k-4dim</code></td>
<td align="center"><code>train_test_split_*.json</code></td>
<td align="center">center crop to 576</td>
<td align="center">resize to 256</td>
</tr>
<tr>
<td align="center"><code>R</code> (ReconFusion) </td>
<td align="center"><code>re10k</code></td>
<td align="center"><code>train_test_split_*.json</code></td>
<td align="center">center crop to 576</td>
<td align="center">\</td>
</tr>
<tr>
<td align="center"><code>P</code> (pixelSplat) </td>
<td align="center"><code>re10k-pixelsplat</code></td>
<td align="center"><code>train_test_split_*.json</code></td>
<td align="center">center crop to 576</td>
<td align="center">resize to 256</td>
</tr>
<tr>
<td align="center"><code>V</code> (ViewCrafter) </td>
<td align="center"><code>re10k-viewcrafter</code></td>
<td align="center"><code>images/*.png</code>,<code>transforms.json</code>,<code>train_test_split_*.json</code></td>
<td align="center">resize the shortest side to 576 (<code>--L_short 576</code>)</td>
<td align="center">center crop</td>
</tr>
<tr>
<td align="center">LLFF</td>
<td align="center"><code>R</code> (ReconFusion) </td>
<td align="center"><code>llff</code></td>
<td align="center"><code>train_test_split_*.json</code></td>
<td align="center">center crop to 576</td>
<td align="center">\</td>
</tr>
<tr>
<td align="center">DTU</td>
<td align="center"><code>R</code> (ReconFusion) </td>
<td align="center"><code>dtu</code></td>
<td align="center"><code>train_test_split_*.json</code></td>
<td align="center">center crop to 576</td>
<td align="center">\</td>
</tr>
<tr>
<td align="center" rowspan="2">CO3D</td>
<td align="center"><code>R</code> (ReconFusion) </td>
<td align="center"><code>co3d</code></td>
<td align="center"><code>train_test_split_*.json</code></td>
<td align="center">center crop to 576</td>
<td align="center">\</td>
</tr>
<tr>
<td align="center"><code>V</code> (ViewCrafter) </td>
<td align="center"><code>co3d-viewcrafter</code></td>
<td align="center"><code>images/*.png</code>,<code>transforms.json</code>,<code>train_test_split_*.json</code></td>
<td align="center">resize the shortest side to 576 (<code>--L_short 576</code>)</td>
<td align="center">center crop</td>
</tr>
<tr>
<td align="center" rowspan="2" >WildRGB-D</td>
<td align="center"><code>Oₑ</code> (Ours, easy) </td>
<td align="center"><code>wildgbd/easy</code></td>
<td align="center"><code>train_test_split_*.json</code></td>
<td align="center">center crop to 576</td>
<td align="center">\</td>
</tr>
<tr>
<td align="center"><code>Oₕ</code> (Ours, hard) </td>
<td align="center"><code>wildgbd/hard</code></td>
<td align="center"><code>train_test_split_*.json</code></td>
<td align="center">center crop to 576</td>
<td align="center">\</td>
</tr>
<tr>
<td align="center">Mip-NeRF360</td>
<td align="center"><code>R</code> (ReconFusion) </td>
<td align="center"><code>mipnerf360</code></td>
<td align="center"><code>train_test_split_*.json</code></td>
<td align="center">center crop to 576</td>
<td align="center">\</td>
</tr>
<tr>
<td align="center" rowspan="2">DL3DV-140</td>
<td align="center"><code>O</code> (Ours) </td>
<td align="center"><code>dl3dv10</code></td>
<td align="center"><code>train_test_split_*.json</code></td>
<td align="center">center crop to 576</td>
<td align="center">\</td>
</tr>
<tr>
<td align="center"><code>L</code> (Long-LRM) </td>
<td align="center"><code>dl3dv140</code></td>
<td align="center"><code>train_test_split_*.json</code></td>
<td align="center">center crop to 576</td>
<td align="center">\</td>
</tr>
<tr>
<td align="center" rowspan="2">Tanks and Temples</td>
<td align="center"><code>V</code> (ViewCrafter) </td>
<td align="center"><code>tnt-viewcrafter</code></td>
<td align="center"><code>images/*.png</code>,<code>transforms.json</code>,<code>train_test_split_*.json</code></td>
<td align="center">resize the shortest side to 576 (<code>--L_short 576</code>)</td>
<td align="center">center crop</td>
</tr>
<tr>
<td align="center"><code>L</code> (Long-LRM) </td>
<td align="center"><code>tnt-longlrm</code></td>
<td align="center"><code>train_test_split_*.json</code></td>
<td align="center">center crop to 576</td>
<td align="center">\</td>
</tr>
</tbody>
</table>
- For entries without `images/*.png` and `transforms.json`, we use the images from the original dataset after converting them into the `reconfusion` format, which is then parsable by `ReconfusionParser` (`seva/data_io.py`).
Please note that during this conversion, you should sort the images by `sorted(image_paths)`, which is then directly indexable by our train/test ids. We provide in `benchmark/export_reconfusion_example.py` an example script converting an existing academic dataset into the the scene folders.
- For evaluation and benchmarking, we first conduct operations in the `Image Preprocessing` column to the model input and then operations in the `Image Postprocessing` column to the model output. The final processed samples are used for metric computation.
## Acknowledgment
We would like to thank Wangbo Yu, Aleksander Hołyński, Saurabh Saxena, and Ziwen Chen for their kind clarification on experiment settings.
|