ZayarnyukNick's picture
Upload folder using huggingface_hub
864ebc9 verified
#!/usr/bin/env python3
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# Preprocessing code for the BlendedMVS dataset
# dataset at https://github.com/YoYo000/BlendedMVS
# 1) Download BlendedMVS.zip
# 2) Download BlendedMVS+.zip
# 3) Download BlendedMVS++.zip
# 4) Unzip everything in the same /path/to/tmp/blendedMVS/ directory
# 5) python datasets_preprocess/preprocess_blendedMVS.py --blendedmvs_dir /path/to/tmp/blendedMVS/
# --------------------------------------------------------
import os
import os.path as osp
import re
import numpy as np
from tqdm import tqdm
os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1"
import cv2
import path_to_root # noqa
from dust3r.datasets.utils import cropping # noqa
from dust3r.utils.parallel import parallel_threads
def get_parser():
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--blendedmvs_dir", required=True)
parser.add_argument("--precomputed_pairs", required=True)
parser.add_argument("--output_dir", default="data/blendedmvs_processed")
return parser
def main(db_root, pairs_path, output_dir):
print(">> Listing all sequences")
sequences = [f for f in os.listdir(db_root) if len(f) == 24]
# should find 502 scenes
assert sequences, f"did not found any sequences at {db_root}"
print(f" (found {len(sequences)} sequences)")
for i, seq in enumerate(tqdm(sequences)):
out_dir = osp.join(output_dir, seq)
os.makedirs(out_dir, exist_ok=True)
# generate the crops
root = osp.join(db_root, seq)
cam_dir = osp.join(root, "cams")
func_args = [
(root, f[:-8], out_dir)
for f in os.listdir(cam_dir)
if not f.startswith("pair")
]
parallel_threads(load_crop_and_save, func_args, star_args=True, leave=False)
# verify that all pairs are there
pairs = np.load(pairs_path)
for seqh, seql, img1, img2, score in tqdm(pairs):
for view_index in [img1, img2]:
impath = osp.join(
output_dir, f"{seqh:08x}{seql:016x}", f"{view_index:08n}.jpg"
)
assert osp.isfile(impath), f"missing image at {impath=}"
print(f">> Done, saved everything in {output_dir}/")
def load_crop_and_save(root, img, out_dir):
if osp.isfile(osp.join(out_dir, img + ".npz")):
return # already done
# load everything
intrinsics_in, R_camin2world, t_camin2world = _load_pose(
osp.join(root, "cams", img + "_cam.txt")
)
color_image_in = cv2.cvtColor(
cv2.imread(osp.join(root, "blended_images", img + ".jpg"), cv2.IMREAD_COLOR),
cv2.COLOR_BGR2RGB,
)
depthmap_in = load_pfm_file(osp.join(root, "rendered_depth_maps", img + ".pfm"))
# do the crop
H, W = color_image_in.shape[:2]
assert H * 4 == W * 3
image, depthmap, intrinsics_out, R_in2out = _crop_image(
intrinsics_in, color_image_in, depthmap_in, (512, 384)
)
# write everything
image.save(osp.join(out_dir, img + ".jpg"), quality=80)
cv2.imwrite(osp.join(out_dir, img + ".exr"), depthmap)
# New camera parameters
R_camout2world = R_camin2world @ R_in2out.T
t_camout2world = t_camin2world
np.savez(
osp.join(out_dir, img + ".npz"),
intrinsics=intrinsics_out,
R_cam2world=R_camout2world,
t_cam2world=t_camout2world,
)
def _crop_image(intrinsics_in, color_image_in, depthmap_in, resolution_out=(800, 800)):
image, depthmap, intrinsics_out = cropping.rescale_image_depthmap(
color_image_in, depthmap_in, intrinsics_in, resolution_out
)
R_in2out = np.eye(3)
return image, depthmap, intrinsics_out, R_in2out
def _load_pose(path, ret_44=False):
f = open(path)
RT = np.loadtxt(f, skiprows=1, max_rows=4, dtype=np.float32)
assert RT.shape == (4, 4)
RT = np.linalg.inv(RT) # world2cam to cam2world
K = np.loadtxt(f, skiprows=2, max_rows=3, dtype=np.float32)
assert K.shape == (3, 3)
if ret_44:
return K, RT
return K, RT[:3, :3], RT[:3, 3] # , depth_uint8_to_f32
def load_pfm_file(file_path):
with open(file_path, "rb") as file:
header = file.readline().decode("UTF-8").strip()
if header == "PF":
is_color = True
elif header == "Pf":
is_color = False
else:
raise ValueError("The provided file is not a valid PFM file.")
dimensions = re.match(r"^(\d+)\s(\d+)\s$", file.readline().decode("UTF-8"))
if dimensions:
img_width, img_height = map(int, dimensions.groups())
else:
raise ValueError("Invalid PFM header format.")
endian_scale = float(file.readline().decode("UTF-8").strip())
if endian_scale < 0:
dtype = "<f" # little-endian
else:
dtype = ">f" # big-endian
data_buffer = file.read()
img_data = np.frombuffer(data_buffer, dtype=dtype)
if is_color:
img_data = np.reshape(img_data, (img_height, img_width, 3))
else:
img_data = np.reshape(img_data, (img_height, img_width))
img_data = cv2.flip(img_data, 0)
return img_data
if __name__ == "__main__":
parser = get_parser()
args = parser.parse_args()
main(args.blendedmvs_dir, args.precomputed_pairs, args.output_dir)