Spaces:
Runtime error
Runtime error
#!/usr/bin/env python3 | |
# Copyright (C) 2024-present Naver Corporation. All rights reserved. | |
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). | |
# | |
# -------------------------------------------------------- | |
# Preprocessing code for the StaticThings3D dataset | |
# dataset at https://github.com/lmb-freiburg/robustmvd/blob/master/rmvd/data/README.md#staticthings3d | |
# 1) Download StaticThings3D in /path/to/StaticThings3D/ | |
# with the script at https://github.com/lmb-freiburg/robustmvd/blob/master/rmvd/data/scripts/download_staticthings3d.sh | |
# --> depths.tar.bz2 frames_finalpass.tar.bz2 poses.tar.bz2 frames_cleanpass.tar.bz2 intrinsics.tar.bz2 | |
# 2) unzip everything in the same /path/to/StaticThings3D/ directory | |
# 5) python datasets_preprocess/preprocess_staticthings3d.py --StaticThings3D_dir /path/to/tmp/StaticThings3D/ | |
# -------------------------------------------------------- | |
import os | |
import os.path as osp | |
import re | |
import numpy as np | |
from tqdm import tqdm | |
os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1" | |
import cv2 | |
import path_to_root # noqa | |
from dust3r.datasets.utils import cropping # noqa | |
from dust3r.utils.parallel import parallel_threads | |
def get_parser(): | |
import argparse | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--StaticThings3D_dir", required=True) | |
parser.add_argument("--precomputed_pairs", required=True) | |
parser.add_argument("--output_dir", default="data/staticthings3d_processed") | |
return parser | |
def main(db_root, pairs_path, output_dir): | |
all_scenes = _list_all_scenes(db_root) | |
# crop images | |
args = [ | |
(db_root, osp.join(split, subsplit, seq), camera, f"{n:04d}", output_dir) | |
for split, subsplit, seq in all_scenes | |
for camera in ["left", "right"] | |
for n in range(6, 16) | |
] | |
parallel_threads(load_crop_and_save, args, star_args=True, front_num=1) | |
# verify that all images are there | |
CAM = {b"l": "left", b"r": "right"} | |
pairs = np.load(pairs_path) | |
for scene, seq, cam1, im1, cam2, im2 in tqdm(pairs): | |
seq_path = osp.join("TRAIN", scene.decode("ascii"), f"{seq:04d}") | |
for cam, idx in [(CAM[cam1], im1), (CAM[cam2], im2)]: | |
for ext in ["clean", "final"]: | |
impath = osp.join(output_dir, seq_path, cam, f"{idx:04n}_{ext}.jpg") | |
assert osp.isfile(impath), f"missing an image at {impath=}" | |
print(f">> Saved all data to {output_dir}!") | |
def load_crop_and_save(db_root, relpath_, camera, num, out_dir): | |
relpath = osp.join(relpath_, camera, num) | |
if osp.isfile(osp.join(out_dir, relpath + ".npz")): | |
return | |
os.makedirs(osp.join(out_dir, relpath_, camera), exist_ok=True) | |
# load everything | |
intrinsics_in = readFloat( | |
osp.join(db_root, "intrinsics", relpath_, num + ".float3") | |
) | |
cam2world = np.linalg.inv( | |
readFloat(osp.join(db_root, "poses", relpath + ".float3")) | |
) | |
depthmap_in = readFloat(osp.join(db_root, "depths", relpath + ".float3")) | |
img_clean = cv2.cvtColor( | |
cv2.imread( | |
osp.join(db_root, "frames_cleanpass", relpath + ".png"), cv2.IMREAD_COLOR | |
), | |
cv2.COLOR_BGR2RGB, | |
) | |
img_final = cv2.cvtColor( | |
cv2.imread( | |
osp.join(db_root, "frames_finalpass", relpath + ".png"), cv2.IMREAD_COLOR | |
), | |
cv2.COLOR_BGR2RGB, | |
) | |
# do the crop | |
assert img_clean.shape[:2] == (540, 960) | |
assert img_final.shape[:2] == (540, 960) | |
(clean_out, final_out), depthmap, intrinsics_out, R_in2out = _crop_image( | |
intrinsics_in, (img_clean, img_final), depthmap_in, (512, 384) | |
) | |
# write everything | |
clean_out.save(osp.join(out_dir, relpath + "_clean.jpg"), quality=80) | |
final_out.save(osp.join(out_dir, relpath + "_final.jpg"), quality=80) | |
cv2.imwrite(osp.join(out_dir, relpath + ".exr"), depthmap) | |
# New camera parameters | |
cam2world[:3, :3] = cam2world[:3, :3] @ R_in2out.T | |
np.savez( | |
osp.join(out_dir, relpath + ".npz"), | |
intrinsics=intrinsics_out, | |
cam2world=cam2world, | |
) | |
def _crop_image(intrinsics_in, color_image_in, depthmap_in, resolution_out=(512, 512)): | |
image, depthmap, intrinsics_out = cropping.rescale_image_depthmap( | |
color_image_in, depthmap_in, intrinsics_in, resolution_out | |
) | |
R_in2out = np.eye(3) | |
return image, depthmap, intrinsics_out, R_in2out | |
def _list_all_scenes(path): | |
print(">> Listing all scenes") | |
res = [] | |
for split in ["TRAIN"]: | |
for subsplit in "ABC": | |
for seq in os.listdir(osp.join(path, "intrinsics", split, subsplit)): | |
res.append((split, subsplit, seq)) | |
print(f" (found ({len(res)}) scenes)") | |
assert res, f"Did not find anything at {path=}" | |
return res | |
def readFloat(name): | |
with open(name, "rb") as f: | |
if (f.readline().decode("utf-8")) != "float\n": | |
raise Exception("float file %s did not contain <float> keyword" % name) | |
dim = int(f.readline()) | |
dims = [] | |
count = 1 | |
for i in range(0, dim): | |
d = int(f.readline()) | |
dims.append(d) | |
count *= d | |
dims = list(reversed(dims)) | |
data = np.fromfile(f, np.float32, count).reshape(dims) | |
return data # Hxw or CxHxW NxCxHxW | |
if __name__ == "__main__": | |
parser = get_parser() | |
args = parser.parse_args() | |
main(args.StaticThings3D_dir, args.precomputed_pairs, args.output_dir) | |