File size: 5,461 Bytes
a5b88b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9778616
01504eb
9778616
 
 
01504eb
 
 
 
 
 
 
 
 
 
 
 
9778616
 
a5b88b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6d6cad
a5b88b1
 
b6d6cad
a5b88b1
 
 
 
 
 
 
7da8033
a5b88b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7da8033
a5b88b1
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import streamlit as st
import jax
import jax.numpy as jnp
import matplotlib.pyplot as plt


def parabola_fn(x):
    return x**0.5


def circle_fn(x):
    return (1 - x**2) ** 0.5


d_parabola_fn = jax.grad(parabola_fn)
d_circle_fn = jax.grad(circle_fn)


def loss_fn(params):
    x1 = params["x1"]
    x2 = params["x2"]
    # parpendicular line to the tangent of the parabola: y = m1 * x + c1
    m1 = -1 / d_parabola_fn(x1)
    c1 = parabola_fn(x1) - m1 * x1

    def perpendicular_parabola_fn(x):
        return m1 * x + c1

    # parpendicular line to the tangent of the circle: y = m2 * x + c2
    m2 = -1 / d_circle_fn(x2)
    c2 = circle_fn(x2) - m2 * x2

    def perpendicular_circle_fn(x):
        return m2 * x + c2

    # x_star and y_star are the intersection of the two lines
    x_star = (c2 - c1) / (m1 - m2)
    y_star = m1 * x_star + c1

    # three quantities should be equal to each other
    # 1. distance between intersection and parabola
    # 2. distance between intersection and circle
    # 3. distance between intersection and x=0 line

    d1 = (x_star - x1) ** 2 + (y_star - parabola_fn(x1)) ** 2
    d2 = (x_star - x2) ** 2 + (y_star - circle_fn(x2)) ** 2
    d3 = x_star**2

    aux = {
        "x_star": x_star,
        "y_star": y_star,
        "perpendicular_parabola_fn": perpendicular_parabola_fn,
        "perpendicular_circle_fn": perpendicular_circle_fn,
        "r": d1**0.5,
    }
    # final loss
    loss = (d1 - d2) ** 2 + (d1 - d3) ** 2 + (d2 - d3) ** 2

    return loss, aux


x = jnp.linspace(0, 1, 100)

st.title("Radius of the Circle: Optimization Playground")
st.markdown(
    r"""
            Inspired from: https://twitter.com/iwontoffendyou/status/1704935240907518367
            
            Optimize the radius of the circle such that it is tangent to the parabola, unit circle and the x=0 line
            
            Method:
            - The inner circle is tangent to the parabola at $x=x_1$ and tangent to the unit circle at $x=x_2$.
            - Let's call the center of the inner circle as $(x^*, y^*)$.
            - We know that ditances between $(x^*, y^*)$ and the parabola, unit circle and the x=0 line should be equal to each other.
            - First, we can find analytical forms of perpendicular lines shown in the figure. They have the form of $y = m * x + c$ where $m = -\frac{1}{f'(x)}$ and $c = f(x) - m * x$.
            - Perpendicular line to the parabola: $y = m_1 * x + c_1$
            - Perpendicular line to the unit circle: $y = m_2 * x + c_2$
            - The intersection of the two lines is $(x^*, y^*)$. $x^* = \frac{c_2 - c_1}{m_1 -m_2}$ and $y^* = m_1 * x^* + c_1$ or $y^* = m_2 * x^* + c_2$.
            - We define three distances: $d_1 = (x^* - x_1)^2 + (y^* - f(x_1))^2$, $d_2 = (x^* - x_2)^2 + (y^* - f(x_2))^2$ and $d_3 = {x^*}^2$.
            - Our loss function is $L = (d_1 - d_2)^2 + (d_1 - d_3)^2 + (d_2 - d_3)^2$.
            
            """
)

col1, col2 = st.columns(2)

x1 = col1.slider("initial x1 (x intersection with parabola)", 0.0, 1.0, 0.5)
x2 = col1.slider("initial x2 (x intersection with the circle)", 0.0, 1.0, 0.5)
n_epochs = col2.slider("n_epochs", 0, 1000, 50)
lr = col2.slider("lr", 0.0, 1.0, value=0.1, step=0.01)

# submit button
submit = st.button("submit")

# when submit button is clicked run the following code
params = {"x1": x1, "x2": x2}
losses = []
value_and_grad_fn = jax.value_and_grad(loss_fn, has_aux=True)

# initialize plot
fig, axes = plt.subplots(1, 2, figsize=(12, 6))
axes[0].set_xlim(0, 1)
axes[0].set_ylim(0, 1)
axes[0].set_aspect("equal")

value, aux = loss_fn(params)
(pbola_plot,) = axes[0].plot(x, parabola_fn(x), color="red")
(pbola_perpendicular_plot,) = axes[0].plot(x, aux["perpendicular_parabola_fn"](x), color="red", linestyle="--")
(cicle_plot,) = axes[0].plot(x, circle_fn(x), color="blue")
(circle_perpendicular_plot,) = axes[0].plot(x, aux["perpendicular_circle_fn"](x), color="blue", linestyle="--")
x_star, y_star = aux["x_star"], aux["y_star"]
(x0_perpendicular_plot,) = axes[0].plot([0, 1], [y_star, y_star], color="black", linestyle="--")
radius = aux["r"]
axes[0].add_patch(plt.Circle((x_star, y_star), radius, fill=False))

axes[1].set_xlim(0, n_epochs)
axes[1].set_ylim(0, value)
(loss_plot,) = axes[1].plot(losses, color="black")

pbar = st.progress(0)

with st.empty():
    st.pyplot(fig)
    if submit:
        for i in range(n_epochs):
            (value, _), grad = value_and_grad_fn(params)

            params["x1"] -= lr * grad["x1"]
            params["x2"] -= lr * grad["x2"]
            losses.append(value)

            _, aux = loss_fn(params)
            print(params, grad, lr)
            pbola_plot.set_data(x, parabola_fn(x))
            pbola_perpendicular_plot.set_data(x, aux["perpendicular_parabola_fn"](x))
            cicle_plot.set_data(x, circle_fn(x))
            circle_perpendicular_plot.set_data(x, aux["perpendicular_circle_fn"](x))
            x_star, y_star = aux["x_star"], aux["y_star"]
            x0_perpendicular_plot.set_data([0, 1], [y_star, y_star])
            radius = aux["r"]
            axes[0].add_patch(plt.Circle((x_star, y_star), radius, fill=False))

            loss_plot.set_data(range(len(losses)), losses)

            pbar.progress(i / n_epochs)

            axes[0].set_title(f"x1: {params['x1']:.3f}, x2: {params['x2']:.3f} \n r: {radius:.4f}")
            axes[1].set_title(f"epoch: {i}, loss: {value:.5f}")

            st.pyplot(fig)