Spaces:
Sleeping
Sleeping
File size: 5,461 Bytes
a5b88b1 9778616 01504eb 9778616 01504eb 9778616 a5b88b1 b6d6cad a5b88b1 b6d6cad a5b88b1 7da8033 a5b88b1 7da8033 a5b88b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
import streamlit as st
import jax
import jax.numpy as jnp
import matplotlib.pyplot as plt
def parabola_fn(x):
return x**0.5
def circle_fn(x):
return (1 - x**2) ** 0.5
d_parabola_fn = jax.grad(parabola_fn)
d_circle_fn = jax.grad(circle_fn)
def loss_fn(params):
x1 = params["x1"]
x2 = params["x2"]
# parpendicular line to the tangent of the parabola: y = m1 * x + c1
m1 = -1 / d_parabola_fn(x1)
c1 = parabola_fn(x1) - m1 * x1
def perpendicular_parabola_fn(x):
return m1 * x + c1
# parpendicular line to the tangent of the circle: y = m2 * x + c2
m2 = -1 / d_circle_fn(x2)
c2 = circle_fn(x2) - m2 * x2
def perpendicular_circle_fn(x):
return m2 * x + c2
# x_star and y_star are the intersection of the two lines
x_star = (c2 - c1) / (m1 - m2)
y_star = m1 * x_star + c1
# three quantities should be equal to each other
# 1. distance between intersection and parabola
# 2. distance between intersection and circle
# 3. distance between intersection and x=0 line
d1 = (x_star - x1) ** 2 + (y_star - parabola_fn(x1)) ** 2
d2 = (x_star - x2) ** 2 + (y_star - circle_fn(x2)) ** 2
d3 = x_star**2
aux = {
"x_star": x_star,
"y_star": y_star,
"perpendicular_parabola_fn": perpendicular_parabola_fn,
"perpendicular_circle_fn": perpendicular_circle_fn,
"r": d1**0.5,
}
# final loss
loss = (d1 - d2) ** 2 + (d1 - d3) ** 2 + (d2 - d3) ** 2
return loss, aux
x = jnp.linspace(0, 1, 100)
st.title("Radius of the Circle: Optimization Playground")
st.markdown(
r"""
Inspired from: https://twitter.com/iwontoffendyou/status/1704935240907518367
Optimize the radius of the circle such that it is tangent to the parabola, unit circle and the x=0 line
Method:
- The inner circle is tangent to the parabola at $x=x_1$ and tangent to the unit circle at $x=x_2$.
- Let's call the center of the inner circle as $(x^*, y^*)$.
- We know that ditances between $(x^*, y^*)$ and the parabola, unit circle and the x=0 line should be equal to each other.
- First, we can find analytical forms of perpendicular lines shown in the figure. They have the form of $y = m * x + c$ where $m = -\frac{1}{f'(x)}$ and $c = f(x) - m * x$.
- Perpendicular line to the parabola: $y = m_1 * x + c_1$
- Perpendicular line to the unit circle: $y = m_2 * x + c_2$
- The intersection of the two lines is $(x^*, y^*)$. $x^* = \frac{c_2 - c_1}{m_1 -m_2}$ and $y^* = m_1 * x^* + c_1$ or $y^* = m_2 * x^* + c_2$.
- We define three distances: $d_1 = (x^* - x_1)^2 + (y^* - f(x_1))^2$, $d_2 = (x^* - x_2)^2 + (y^* - f(x_2))^2$ and $d_3 = {x^*}^2$.
- Our loss function is $L = (d_1 - d_2)^2 + (d_1 - d_3)^2 + (d_2 - d_3)^2$.
"""
)
col1, col2 = st.columns(2)
x1 = col1.slider("initial x1 (x intersection with parabola)", 0.0, 1.0, 0.5)
x2 = col1.slider("initial x2 (x intersection with the circle)", 0.0, 1.0, 0.5)
n_epochs = col2.slider("n_epochs", 0, 1000, 50)
lr = col2.slider("lr", 0.0, 1.0, value=0.1, step=0.01)
# submit button
submit = st.button("submit")
# when submit button is clicked run the following code
params = {"x1": x1, "x2": x2}
losses = []
value_and_grad_fn = jax.value_and_grad(loss_fn, has_aux=True)
# initialize plot
fig, axes = plt.subplots(1, 2, figsize=(12, 6))
axes[0].set_xlim(0, 1)
axes[0].set_ylim(0, 1)
axes[0].set_aspect("equal")
value, aux = loss_fn(params)
(pbola_plot,) = axes[0].plot(x, parabola_fn(x), color="red")
(pbola_perpendicular_plot,) = axes[0].plot(x, aux["perpendicular_parabola_fn"](x), color="red", linestyle="--")
(cicle_plot,) = axes[0].plot(x, circle_fn(x), color="blue")
(circle_perpendicular_plot,) = axes[0].plot(x, aux["perpendicular_circle_fn"](x), color="blue", linestyle="--")
x_star, y_star = aux["x_star"], aux["y_star"]
(x0_perpendicular_plot,) = axes[0].plot([0, 1], [y_star, y_star], color="black", linestyle="--")
radius = aux["r"]
axes[0].add_patch(plt.Circle((x_star, y_star), radius, fill=False))
axes[1].set_xlim(0, n_epochs)
axes[1].set_ylim(0, value)
(loss_plot,) = axes[1].plot(losses, color="black")
pbar = st.progress(0)
with st.empty():
st.pyplot(fig)
if submit:
for i in range(n_epochs):
(value, _), grad = value_and_grad_fn(params)
params["x1"] -= lr * grad["x1"]
params["x2"] -= lr * grad["x2"]
losses.append(value)
_, aux = loss_fn(params)
print(params, grad, lr)
pbola_plot.set_data(x, parabola_fn(x))
pbola_perpendicular_plot.set_data(x, aux["perpendicular_parabola_fn"](x))
cicle_plot.set_data(x, circle_fn(x))
circle_perpendicular_plot.set_data(x, aux["perpendicular_circle_fn"](x))
x_star, y_star = aux["x_star"], aux["y_star"]
x0_perpendicular_plot.set_data([0, 1], [y_star, y_star])
radius = aux["r"]
axes[0].add_patch(plt.Circle((x_star, y_star), radius, fill=False))
loss_plot.set_data(range(len(losses)), losses)
pbar.progress(i / n_epochs)
axes[0].set_title(f"x1: {params['x1']:.3f}, x2: {params['x2']:.3f} \n r: {radius:.4f}")
axes[1].set_title(f"epoch: {i}, loss: {value:.5f}")
st.pyplot(fig)
|