Spaces:
Sleeping
Sleeping
UjjwalKGupta
commited on
Add Zonalstats for Buffer
Browse files
app.py
CHANGED
@@ -1,196 +1,257 @@
|
|
1 |
-
import os
|
2 |
-
import ee
|
3 |
-
import geemap
|
4 |
-
import json
|
5 |
-
import geopandas as gpd
|
6 |
-
import streamlit as st
|
7 |
-
import pandas as pd
|
8 |
-
from fastkml import kml
|
9 |
-
import geojson
|
10 |
-
|
11 |
-
|
12 |
-
os.
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
for
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
for
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
#
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
ee_object
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
st.
|
195 |
-
|
196 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import ee
|
3 |
+
import geemap
|
4 |
+
import json
|
5 |
+
import geopandas as gpd
|
6 |
+
import streamlit as st
|
7 |
+
import pandas as pd
|
8 |
+
from fastkml import kml
|
9 |
+
import geojson
|
10 |
+
from shapely.geometry import Polygon, MultiPolygon, shape, Point
|
11 |
+
|
12 |
+
ee_credentials = os.environ.get("EE")
|
13 |
+
os.makedirs(os.path.expanduser("~/.config/earthengine/"), exist_ok=True)
|
14 |
+
with open(os.path.expanduser("~/.config/earthengine/credentials"), "w") as f:
|
15 |
+
f.write(ee_credentials)
|
16 |
+
|
17 |
+
ee.Initialize()
|
18 |
+
|
19 |
+
def convert_3d_to_2d(geometry):
|
20 |
+
"""
|
21 |
+
Recursively convert any 3D coordinates in a geometry to 2D.
|
22 |
+
"""
|
23 |
+
if geometry.is_empty:
|
24 |
+
return geometry
|
25 |
+
|
26 |
+
if geometry.geom_type == 'Polygon':
|
27 |
+
return geojson.Polygon([[(x, y) for x, y, *_ in ring] for ring in geometry.coordinates])
|
28 |
+
|
29 |
+
elif geometry.geom_type == 'MultiPolygon':
|
30 |
+
return geojson.MultiPolygon([
|
31 |
+
[[(x, y) for x, y, *_ in ring] for ring in poly]
|
32 |
+
for poly in geometry.coordinates
|
33 |
+
])
|
34 |
+
|
35 |
+
elif geometry.geom_type == 'LineString':
|
36 |
+
return geojson.LineString([(x, y) for x, y, *_ in geometry.coordinates])
|
37 |
+
|
38 |
+
elif geometry.geom_type == 'MultiLineString':
|
39 |
+
return geojson.MultiLineString([
|
40 |
+
[(x, y) for x, y, *_ in line]
|
41 |
+
for line in geometry.coordinates
|
42 |
+
])
|
43 |
+
|
44 |
+
elif geometry.geom_type == 'Point':
|
45 |
+
x, y, *_ = geometry.coordinates
|
46 |
+
return geojson.Point((x, y))
|
47 |
+
|
48 |
+
elif geometry.geom_type == 'MultiPoint':
|
49 |
+
return geojson.MultiPoint([(x, y) for x, y, *_ in geometry.coordinates])
|
50 |
+
|
51 |
+
return geometry # Return unchanged if not a supported geometry type
|
52 |
+
|
53 |
+
def convert_to_2d_geometry(geom): #Handles Polygon Only
|
54 |
+
if geom is None:
|
55 |
+
return None
|
56 |
+
elif geom.has_z:
|
57 |
+
# Extract exterior coordinates and convert to 2D
|
58 |
+
exterior_coords = geom.exterior.coords[:] # Get all coordinates of the exterior ring
|
59 |
+
exterior_coords_2d = [(x, y) for x, y, *_ in exterior_coords] # Keep only the x and y coordinates, ignoring z
|
60 |
+
|
61 |
+
# Handle interior rings (holes) if any
|
62 |
+
interior_coords_2d = []
|
63 |
+
for interior in geom.interiors:
|
64 |
+
interior_coords = interior.coords[:]
|
65 |
+
interior_coords_2d.append([(x, y) for x, y, *_ in interior_coords])
|
66 |
+
|
67 |
+
# Create a new Polygon with 2D coordinates
|
68 |
+
return type(geom)(exterior_coords_2d, interior_coords_2d)
|
69 |
+
else:
|
70 |
+
return geom
|
71 |
+
|
72 |
+
def kml_to_geojson(kml_string):
|
73 |
+
k = kml.KML()
|
74 |
+
k.from_string(kml_string.encode('utf-8')) # Convert the string to bytes
|
75 |
+
features = list(k.features())
|
76 |
+
|
77 |
+
geojson_features = []
|
78 |
+
for feature in features:
|
79 |
+
geometry_2d = convert_3d_to_2d(feature.geometry)
|
80 |
+
geojson_features.append(geojson.Feature(geometry=geometry_2d))
|
81 |
+
|
82 |
+
geojson_data = geojson.FeatureCollection(geojson_features)
|
83 |
+
return geojson_data
|
84 |
+
|
85 |
+
# Calculate NDVI as Normalized Index
|
86 |
+
def reduce_zonal_ndvi(image, ee_object):
|
87 |
+
ndvi = image.normalizedDifference(['B8', 'B4']).rename('NDVI')
|
88 |
+
image = image.addBands(ndvi)
|
89 |
+
image = image.select('NDVI')
|
90 |
+
reduced = image.reduceRegion(
|
91 |
+
reducer=ee.Reducer.mean(),
|
92 |
+
geometry=ee_object.geometry(),
|
93 |
+
scale=10,
|
94 |
+
maxPixels=1e12
|
95 |
+
)
|
96 |
+
return image.set(reduced)
|
97 |
+
|
98 |
+
# Validate KML File for Single Polygon and return polygon information
|
99 |
+
def validate_KML_file(kml_file):
|
100 |
+
try:
|
101 |
+
gdf = gpd.read_file(kml_file)
|
102 |
+
except Exception as e:
|
103 |
+
ValueError("Input must be a valid KML file.")
|
104 |
+
|
105 |
+
if gdf.empty:
|
106 |
+
return {
|
107 |
+
'corner_points': None,
|
108 |
+
'area': None,
|
109 |
+
'perimeter': None,
|
110 |
+
'is_single_polygon': False}
|
111 |
+
|
112 |
+
polygon_info = {}
|
113 |
+
|
114 |
+
# Check if it's a single polygon or multipolygon
|
115 |
+
if isinstance(gdf.iloc[0].geometry, Polygon):
|
116 |
+
polygon_info['is_single_polygon'] = True
|
117 |
+
|
118 |
+
polygon = gdf.geometry.iloc[0]
|
119 |
+
|
120 |
+
# Calculate corner points in GCS projection
|
121 |
+
polygon_info['corner_points'] = [
|
122 |
+
(polygon.bounds[0], polygon.bounds[1]),
|
123 |
+
(polygon.bounds[2], polygon.bounds[1]),
|
124 |
+
(polygon.bounds[2], polygon.bounds[3]),
|
125 |
+
(polygon.bounds[0], polygon.bounds[3])
|
126 |
+
]
|
127 |
+
|
128 |
+
# Calculate Centroids in GCS projection
|
129 |
+
polygon_info['centroid'] = polygon.centroid.coords[0]
|
130 |
+
|
131 |
+
# Calculate area and perimeter in EPSG:7761 projection
|
132 |
+
# It is a local projection defined for Gujarat as per NNRMS
|
133 |
+
polygon = gdf.to_crs(epsg=7761).geometry.iloc[0]
|
134 |
+
polygon_info['area'] = polygon.area
|
135 |
+
polygon_info['perimeter'] = polygon.length
|
136 |
+
|
137 |
+
else:
|
138 |
+
polygon_info['is_single_polygon'] = False
|
139 |
+
polygon_info['corner_points'] = None
|
140 |
+
polygon_info['area'] = None
|
141 |
+
polygon_info['perimeter'] = None
|
142 |
+
polygon_info['centroid'] = None
|
143 |
+
ValueError("Input must be a single Polygon.")
|
144 |
+
|
145 |
+
return polygon_info
|
146 |
+
|
147 |
+
# Get Zonal NDVI
|
148 |
+
def get_zonal_ndvi(collection, geom_ee_object):
|
149 |
+
reduced_collection = collection.map(lambda image: reduce_zonal_ndvi(image, ee_object=geom_ee_object))
|
150 |
+
stats_list = reduced_collection.aggregate_array('NDVI').getInfo()
|
151 |
+
filenames = reduced_collection.aggregate_array('system:index').getInfo()
|
152 |
+
dates = [f.split("_")[0].split('T')[0] for f in reduced_collection.aggregate_array('system:index').getInfo()]
|
153 |
+
df = pd.DataFrame({'NDVI': stats_list, 'Date': dates, 'Imagery': filenames})
|
154 |
+
return df
|
155 |
+
|
156 |
+
def geojson_to_ee(geojson_data):
|
157 |
+
ee_object = ee.FeatureCollection(geojson_data)
|
158 |
+
return ee_object
|
159 |
+
|
160 |
+
def kml_to_gdf(kml_file):
|
161 |
+
try:
|
162 |
+
gdf = gpd.read_file(kml_file)
|
163 |
+
for i in range(len(gdf)):
|
164 |
+
geom = gdf.iloc[i].geometry
|
165 |
+
new_geom = convert_to_2d_geometry(geom)
|
166 |
+
gdf.loc[i, 'geometry'] = new_geom
|
167 |
+
print(gdf.iloc[i].geometry)
|
168 |
+
print(f"KML file '{kml_file}' successfully read")
|
169 |
+
except Exception as e:
|
170 |
+
print(f"Error: {e}")
|
171 |
+
return gdf
|
172 |
+
|
173 |
+
# put title in center
|
174 |
+
st.markdown("""
|
175 |
+
<style>
|
176 |
+
h1 {
|
177 |
+
text-align: center;
|
178 |
+
}
|
179 |
+
</style>
|
180 |
+
""", unsafe_allow_html=True)
|
181 |
+
|
182 |
+
st.title("Mean NDVI Calculator")
|
183 |
+
|
184 |
+
# get the start and end date from the user
|
185 |
+
col = st.columns(2)
|
186 |
+
start_date = col[0].date_input("Start Date", value=pd.to_datetime('2021-01-01'))
|
187 |
+
end_date = col[1].date_input("End Date", value=pd.to_datetime('2021-01-30'))
|
188 |
+
start_date = start_date.strftime("%Y-%m-%d")
|
189 |
+
end_date = end_date.strftime("%Y-%m-%d")
|
190 |
+
|
191 |
+
max_cloud_cover = st.number_input("Max Cloud Cover", value=20)
|
192 |
+
|
193 |
+
# Get the geojson file from the user
|
194 |
+
uploaded_file = st.file_uploader("Upload KML/GeoJSON file", type=["geojson", "kml"])
|
195 |
+
|
196 |
+
# Read the KML file
|
197 |
+
if uploaded_file is None:
|
198 |
+
file_name = "Bhankhara_Df_11_he_5_2020-21.geojson"
|
199 |
+
st.write(f"Using default file: {file_name}")
|
200 |
+
data = gpd.read_file(file_name)
|
201 |
+
with open(file_name) as f:
|
202 |
+
str_data = f.read()
|
203 |
+
else:
|
204 |
+
st.write(f"Using uploaded file: {uploaded_file.name}")
|
205 |
+
file_name = uploaded_file.name
|
206 |
+
bytes_data = uploaded_file.getvalue()
|
207 |
+
str_data = bytes_data.decode("utf-8")
|
208 |
+
|
209 |
+
|
210 |
+
if file_name.endswith(".geojson"):
|
211 |
+
geojson_data = json.loads(str_data)
|
212 |
+
elif file_name.endswith(".kml"):
|
213 |
+
geojson_data = json.loads(kml_to_gdf(str_data).to_json())
|
214 |
+
|
215 |
+
# Read Geojson File
|
216 |
+
ee_object = geojson_to_ee(geojson_data)
|
217 |
+
|
218 |
+
# Filter data based on the date, bounds, cloud coverage and select NIR and Red Band
|
219 |
+
collection = ee.ImageCollection("COPERNICUS/S2_SR_HARMONIZED").filterBounds(ee_object).filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', max_cloud_cover)).filter(ee.Filter.date(start_date, end_date)).select(['B4', 'B8'])
|
220 |
+
|
221 |
+
polygon_info = validate_KML_file(str_data)
|
222 |
+
|
223 |
+
if polygon_info['is_single_polygon']:
|
224 |
+
# Read KML file
|
225 |
+
geom_ee_object = ee.FeatureCollection(geojson_data)
|
226 |
+
|
227 |
+
# Add buffer of 100m to ee_object
|
228 |
+
buffered_ee_object = geom_ee_object.map(lambda feature: feature.buffer(100))
|
229 |
+
|
230 |
+
# Filter data based on the date, bounds, cloud coverage and select NIR and Red Band
|
231 |
+
collection = ee.ImageCollection("COPERNICUS/S2_SR_HARMONIZED").filterBounds(geom_ee_object).filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 20)).filter(ee.Filter.date('2022-01-01', '2023-01-01')).select(['B4', 'B8'])
|
232 |
+
|
233 |
+
# Get Zonal NDVI based on collection and geometries (Original KML and Buffered KML)
|
234 |
+
df_geom = get_zonal_ndvi(collection, geom_ee_object)
|
235 |
+
df_buffered_geom = get_zonal_ndvi(collection, buffered_ee_object)
|
236 |
+
|
237 |
+
# Merge both Zonalstats and create resultant dataframe
|
238 |
+
resultant_df = pd.merge(df_geom, df_buffered_geom, on='Date', how='inner')
|
239 |
+
resultant_df = resultant_df.rename(columns={'NDVI_x': 'AvgNDVI_Inside', 'NDVI_y': 'Avg_NDVI_Buffer'})
|
240 |
+
resultant_df['Ratio'] = resultant_df['AvgNDVI_Inside'] / resultant_df['Avg_NDVI_Buffer']
|
241 |
+
resultant_df.drop(columns=['Imagery_y'], inplace=True)
|
242 |
+
|
243 |
+
# Re-order the columns of the resultant dataframe
|
244 |
+
resultant_df = resultant_df[['Date', 'Imagery_x', 'AvgNDVI_Inside', 'Avg_NDVI_Buffer', 'Ratio']]
|
245 |
+
|
246 |
+
# Map = geemap.Map(center=(polygon_info['centroid'][1],polygon_info['centroid'][0]) , zoom=12)
|
247 |
+
# Map.addLayer(geom_ee_object, {}, 'Layer1')
|
248 |
+
# Map.addLayer(buffered_ee_object, {}, 'Layer2')
|
249 |
+
|
250 |
+
# plot the time series
|
251 |
+
st.write("Time Series Plot")
|
252 |
+
st.line_chart(resultant_df.set_index('Date'))
|
253 |
+
|
254 |
+
#st.write(f"Overall Mean NDVI: {resultant_df['Mean NDVI'].mean():.2f}")
|
255 |
+
|
256 |
+
else:
|
257 |
+
print("Input must be a single Polygon.")
|