Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
|
3 |
+
from groq import Groq
|
4 |
+
import os
|
5 |
+
|
6 |
+
# Set Groq API key
|
7 |
+
os.environ["GROQ_API_KEY"] = "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"
|
8 |
+
|
9 |
+
# Text Classification Setup
|
10 |
+
classifier = pipeline("zero-shot-classification",
|
11 |
+
model="facebook/bart-large-mnli")
|
12 |
+
|
13 |
+
# Chatbot Setup
|
14 |
+
client = Groq()
|
15 |
+
system_prompt = """You are an advanced AI assistant with deep contextual understanding.
|
16 |
+
Maintain natural conversation while demonstrating:
|
17 |
+
1. Complex sentence comprehension
|
18 |
+
2. Contextual awareness across multiple turns
|
19 |
+
3. Emotional intelligence
|
20 |
+
4. Domain-specific knowledge adaptation"""
|
21 |
+
|
22 |
+
def classify_text(text, labels):
|
23 |
+
labels = [label.strip() for label in labels.split(",")]
|
24 |
+
results = classifier(text, labels, multi_label=False)
|
25 |
+
return {label: score for label, score in zip(results["labels"], results["scores"])}
|
26 |
+
|
27 |
+
def groq_chat(user_input, history):
|
28 |
+
conversation = [{"role": "system", "content": system_prompt}]
|
29 |
+
|
30 |
+
for user, assistant in history:
|
31 |
+
conversation.extend([
|
32 |
+
{"role": "user", "content": user},
|
33 |
+
{"role": "assistant", "content": assistant}
|
34 |
+
])
|
35 |
+
|
36 |
+
conversation.append({"role": "user", "content": user_input})
|
37 |
+
|
38 |
+
response = client.chat.completions.create(
|
39 |
+
model="llama3-70b-8192",
|
40 |
+
messages=conversation,
|
41 |
+
temperature=0.7,
|
42 |
+
max_tokens=512,
|
43 |
+
top_p=1
|
44 |
+
)
|
45 |
+
|
46 |
+
return response.choices[0].message.content
|
47 |
+
|
48 |
+
# Gradio Interface
|
49 |
+
with gr.Blocks() as app:
|
50 |
+
gr.Markdown("# Advanced LLM Application")
|
51 |
+
|
52 |
+
with gr.Tab("Text Classification"):
|
53 |
+
with gr.Row():
|
54 |
+
with gr.Column():
|
55 |
+
text_input = gr.Textbox(label="Input Text")
|
56 |
+
labels_input = gr.Textbox(label="Categories (comma-separated)",
|
57 |
+
value="positive, negative, neutral")
|
58 |
+
classify_btn = gr.Button("Classify")
|
59 |
+
results_output = gr.Label(label="Classification Results")
|
60 |
+
|
61 |
+
classify_btn.click(
|
62 |
+
fn=classify_text,
|
63 |
+
inputs=[text_input, labels_input],
|
64 |
+
outputs=results_output
|
65 |
+
)
|
66 |
+
|
67 |
+
with gr.Tab("Chatbot"):
|
68 |
+
chatbot = gr.Chatbot(height=400)
|
69 |
+
msg = gr.Textbox(label="Your Message")
|
70 |
+
clear = gr.Button("Clear")
|
71 |
+
|
72 |
+
def respond(message, chat_history):
|
73 |
+
bot_message = groq_chat(message, chat_history)
|
74 |
+
chat_history.append((message, bot_message))
|
75 |
+
return "", chat_history
|
76 |
+
|
77 |
+
msg.submit(respond, [msg, chatbot], [msg, chatbot])
|
78 |
+
clear.click(lambda: None, None, chatbot, queue=False)
|
79 |
+
|
80 |
+
app.launch()
|