Spaces:
Sleeping
Sleeping
Update tasks/text.py
Browse files- tasks/text.py +83 -29
tasks/text.py
CHANGED
|
@@ -1,15 +1,18 @@
|
|
|
|
|
| 1 |
from fastapi import APIRouter
|
| 2 |
from datetime import datetime
|
| 3 |
from datasets import load_dataset
|
| 4 |
from sklearn.metrics import accuracy_score
|
| 5 |
-
import random
|
| 6 |
|
| 7 |
from .utils.evaluation import TextEvaluationRequest
|
| 8 |
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
| 9 |
|
|
|
|
|
|
|
|
|
|
| 10 |
router = APIRouter()
|
| 11 |
|
| 12 |
-
DESCRIPTION = "
|
| 13 |
ROUTE = "/text"
|
| 14 |
|
| 15 |
@router.post(ROUTE, tags=["Text Task"], description=DESCRIPTION)
|
|
@@ -46,32 +49,83 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
| 46 |
tracker.start()
|
| 47 |
tracker.start_task("inference")
|
| 48 |
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
"
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
"
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
}
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 2 |
from fastapi import APIRouter
|
| 3 |
from datetime import datetime
|
| 4 |
from datasets import load_dataset
|
| 5 |
from sklearn.metrics import accuracy_score
|
|
|
|
| 6 |
|
| 7 |
from .utils.evaluation import TextEvaluationRequest
|
| 8 |
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
| 9 |
|
| 10 |
+
import numpy as np
|
| 11 |
+
import torch
|
| 12 |
+
|
| 13 |
router = APIRouter()
|
| 14 |
|
| 15 |
+
DESCRIPTION = "FrugalDisinfoHunter Model"
|
| 16 |
ROUTE = "/text"
|
| 17 |
|
| 18 |
@router.post(ROUTE, tags=["Text Task"], description=DESCRIPTION)
|
|
|
|
| 49 |
tracker.start()
|
| 50 |
tracker.start_task("inference")
|
| 51 |
|
| 52 |
+
try:
|
| 53 |
+
# Model configuration
|
| 54 |
+
model_name = "Zen0/FrugalDisinfoHunter" # Model path
|
| 55 |
+
tokenizer_name = "google/mobilebert-uncased" # Base MobileBERT tokenizer
|
| 56 |
+
BATCH_SIZE = 32 # Batch size for efficient processing
|
| 57 |
+
MAX_LENGTH = 128 # Maximum sequence length
|
| 58 |
|
| 59 |
+
# Initialize model and tokenizer
|
| 60 |
+
model = AutoModelForSequenceClassification.from_pretrained(
|
| 61 |
+
model_name,
|
| 62 |
+
num_labels=8,
|
| 63 |
+
output_hidden_states=True,
|
| 64 |
+
problem_type="single_label_classification"
|
| 65 |
+
)
|
| 66 |
+
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
|
| 67 |
+
|
| 68 |
+
# Move model to appropriate device
|
| 69 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 70 |
+
model = model.to(device)
|
| 71 |
+
model.eval() # Set model to evaluation mode
|
| 72 |
+
|
| 73 |
+
# Get test texts
|
| 74 |
+
test_texts = test_dataset["quote"]
|
| 75 |
+
predictions = []
|
| 76 |
+
|
| 77 |
+
# Process in batches
|
| 78 |
+
for i in range(0, len(test_texts), BATCH_SIZE):
|
| 79 |
+
batch_texts = test_texts[i:i + BATCH_SIZE]
|
| 80 |
+
|
| 81 |
+
# Tokenize batch
|
| 82 |
+
inputs = tokenizer(
|
| 83 |
+
batch_texts,
|
| 84 |
+
padding=True,
|
| 85 |
+
truncation=True,
|
| 86 |
+
return_tensors="pt",
|
| 87 |
+
max_length=MAX_LENGTH
|
| 88 |
+
)
|
| 89 |
+
|
| 90 |
+
# Move inputs to device
|
| 91 |
+
inputs = {key: val.to(device) for key, val in inputs.items()}
|
| 92 |
+
|
| 93 |
+
# Run inference
|
| 94 |
+
with torch.no_grad():
|
| 95 |
+
outputs = model(**inputs)
|
| 96 |
+
batch_preds = torch.argmax(outputs.logits, dim=1)
|
| 97 |
+
predictions.extend(batch_preds.cpu().numpy())
|
| 98 |
+
|
| 99 |
+
# Get true labels
|
| 100 |
+
true_labels = test_dataset['label']
|
| 101 |
+
|
| 102 |
+
# Stop tracking emissions
|
| 103 |
+
emissions_data = tracker.stop_task()
|
| 104 |
+
|
| 105 |
+
# Calculate accuracy
|
| 106 |
+
accuracy = accuracy_score(true_labels, predictions)
|
| 107 |
+
|
| 108 |
+
# Prepare results dictionary
|
| 109 |
+
results = {
|
| 110 |
+
"username": username,
|
| 111 |
+
"space_url": space_url,
|
| 112 |
+
"submission_timestamp": datetime.now().isoformat(),
|
| 113 |
+
"model_description": DESCRIPTION,
|
| 114 |
+
"accuracy": float(accuracy),
|
| 115 |
+
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
|
| 116 |
+
"emissions_gco2eq": emissions_data.emissions * 1000,
|
| 117 |
+
"emissions_data": clean_emissions_data(emissions_data),
|
| 118 |
+
"api_route": ROUTE,
|
| 119 |
+
"dataset_config": {
|
| 120 |
+
"dataset_name": request.dataset_name,
|
| 121 |
+
"test_size": request.test_size,
|
| 122 |
+
"test_seed": request.test_seed
|
| 123 |
+
}
|
| 124 |
}
|
| 125 |
+
|
| 126 |
+
return results
|
| 127 |
+
|
| 128 |
+
except Exception as e:
|
| 129 |
+
# Stop tracking in case of error
|
| 130 |
+
tracker.stop_task()
|
| 131 |
+
raise e
|