Spaces:
Sleeping
Sleeping
Update tasks/text.py
Browse files- tasks/text.py +29 -9
tasks/text.py
CHANGED
@@ -53,29 +53,49 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
53 |
# YOUR MODEL INFERENCE CODE HERE
|
54 |
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
|
55 |
#--------------------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
-
|
|
|
58 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
59 |
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
test_texts = test_dataset["text"] # The field 'text' contains the climate quotes
|
|
|
62 |
inputs = tokenizer(test_texts, padding=True, truncation=True, return_tensors="pt", max_length=512)
|
63 |
-
|
64 |
-
dataset = load_dataset("quotaclimat/frugalaichallenge-text-train")
|
65 |
|
66 |
-
|
67 |
-
|
|
|
68 |
|
|
|
69 |
with torch.no_grad(): # Disable gradient calculations
|
70 |
outputs = model(**inputs)
|
71 |
logits = outputs.logits
|
72 |
|
73 |
-
# Get predictions from the logits
|
74 |
predictions = torch.argmax(logits, dim=-1).cpu().numpy() # Convert to numpy array for use
|
75 |
|
76 |
-
# Get true labels for accuracy calculation
|
77 |
-
true_labels = test_dataset["label"] # Extract true labels from the dataset
|
78 |
-
|
79 |
#--------------------------------------------------------------------------------------------
|
80 |
# YOUR MODEL INFERENCE STOPS HERE
|
81 |
#--------------------------------------------------------------------------------------------
|
|
|
53 |
# YOUR MODEL INFERENCE CODE HERE
|
54 |
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
|
55 |
#--------------------------------------------------------------------------------------------
|
56 |
+
#--------------------------------------------------------------------------------------------
|
57 |
+
# Load your model and tokenizer from Hugging Face or local path
|
58 |
+
#--------------------------------------------------------------------------------------------
|
59 |
+
|
60 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
61 |
+
import torch
|
62 |
|
63 |
+
# Load model from Hugging Face (adjust if you uploaded it there)
|
64 |
+
model_name = "Zen0/FrugalDisinfoHunter" # Replace with your model identifier if different
|
65 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
66 |
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
67 |
|
68 |
+
#--------------------------------------------------------------------------------------------
|
69 |
+
# Load the dataset
|
70 |
+
#--------------------------------------------------------------------------------------------
|
71 |
+
|
72 |
+
# Assuming 'quotaclimat/frugalaichallenge-text-train' is the dataset you're working with
|
73 |
+
dataset = load_dataset(request.dataset_name)
|
74 |
+
|
75 |
+
# Access the test dataset (you can change this if you want to use a different split)
|
76 |
+
test_dataset = dataset['test'] # Assuming you have a 'test' split available
|
77 |
+
|
78 |
+
#--------------------------------------------------------------------------------------------
|
79 |
+
# Tokenize the text data
|
80 |
+
#--------------------------------------------------------------------------------------------
|
81 |
+
|
82 |
+
# Tokenize the test data (the text field contains the quotes)
|
83 |
test_texts = test_dataset["text"] # The field 'text' contains the climate quotes
|
84 |
+
|
85 |
inputs = tokenizer(test_texts, padding=True, truncation=True, return_tensors="pt", max_length=512)
|
|
|
|
|
86 |
|
87 |
+
#--------------------------------------------------------------------------------------------
|
88 |
+
# Inference
|
89 |
+
#--------------------------------------------------------------------------------------------
|
90 |
|
91 |
+
# Run inference on the dataset using the model
|
92 |
with torch.no_grad(): # Disable gradient calculations
|
93 |
outputs = model(**inputs)
|
94 |
logits = outputs.logits
|
95 |
|
96 |
+
# Get predictions from the logits (choose the class with the highest logit)
|
97 |
predictions = torch.argmax(logits, dim=-1).cpu().numpy() # Convert to numpy array for use
|
98 |
|
|
|
|
|
|
|
99 |
#--------------------------------------------------------------------------------------------
|
100 |
# YOUR MODEL INFERENCE STOPS HERE
|
101 |
#--------------------------------------------------------------------------------------------
|