Spaces:
Sleeping
Sleeping
Update tasks/text.py
Browse files- tasks/text.py +28 -30
tasks/text.py
CHANGED
@@ -7,6 +7,12 @@ import random
|
|
7 |
from .utils.evaluation import TextEvaluationRequest
|
8 |
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
router = APIRouter()
|
11 |
|
12 |
DESCRIPTION = "FrugalDisinfoHunter Model"
|
@@ -53,48 +59,40 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
53 |
# YOUR MODEL INFERENCE CODE HERE
|
54 |
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
|
55 |
#--------------------------------------------------------------------------------------------
|
56 |
-
#--------------------------------------------------------------------------------------------
|
57 |
-
# Load your model and tokenizer from Hugging Face or local path
|
58 |
-
#--------------------------------------------------------------------------------------------
|
59 |
|
60 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
61 |
-
import torch
|
62 |
|
63 |
-
#
|
64 |
-
model_name = "Zen0/FrugalDisinfoHunter"
|
65 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
66 |
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
67 |
|
68 |
-
#--------------------------------------------------------------------------------------------
|
69 |
# Load the dataset
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
# Tokenize the
|
80 |
-
|
81 |
-
|
82 |
-
# Tokenize the test data (the text field contains the quotes)
|
83 |
-
test_texts = test_dataset["text"] # The field 'text' contains the climate quotes
|
84 |
-
|
85 |
inputs = tokenizer(test_texts, padding=True, truncation=True, return_tensors="pt", max_length=512)
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
|
|
91 |
# Run inference on the dataset using the model
|
92 |
with torch.no_grad(): # Disable gradient calculations
|
93 |
outputs = model(**inputs)
|
94 |
logits = outputs.logits
|
95 |
-
|
96 |
# Get predictions from the logits (choose the class with the highest logit)
|
97 |
-
predictions = torch.argmax(logits, dim=-1).cpu().numpy()
|
|
|
98 |
|
99 |
#--------------------------------------------------------------------------------------------
|
100 |
# YOUR MODEL INFERENCE STOPS HERE
|
|
|
7 |
from .utils.evaluation import TextEvaluationRequest
|
8 |
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
9 |
|
10 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
11 |
+
import torch
|
12 |
+
|
13 |
+
import numpy as np
|
14 |
+
|
15 |
+
|
16 |
router = APIRouter()
|
17 |
|
18 |
DESCRIPTION = "FrugalDisinfoHunter Model"
|
|
|
59 |
# YOUR MODEL INFERENCE CODE HERE
|
60 |
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
|
61 |
#--------------------------------------------------------------------------------------------
|
|
|
|
|
|
|
62 |
|
|
|
|
|
63 |
|
64 |
+
# Model and Tokenizer
|
65 |
+
model_name = "Zen0/FrugalDisinfoHunter"
|
66 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
67 |
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
68 |
|
|
|
69 |
# Load the dataset
|
70 |
+
dataset = load_dataset("quotaclimat/frugalaichallenge-text-train")
|
71 |
+
print(dataset.keys()) # Debugging: Check available splits
|
72 |
+
|
73 |
+
# Assuming 'test' split is available
|
74 |
+
test_dataset = dataset['test']
|
75 |
+
|
76 |
+
# Convert the label strings to integers
|
77 |
+
test_dataset = test_dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
|
78 |
+
|
79 |
+
# Tokenize the test data
|
80 |
+
test_texts = test_dataset["text"] # Extracting the 'text' column (quotes)
|
|
|
|
|
|
|
|
|
81 |
inputs = tokenizer(test_texts, padding=True, truncation=True, return_tensors="pt", max_length=512)
|
82 |
+
|
83 |
+
# Move model and inputs to GPU if available
|
84 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
85 |
+
model.to(device)
|
86 |
+
inputs = {key: val.to(device) for key, val in inputs.items()}
|
87 |
+
|
88 |
# Run inference on the dataset using the model
|
89 |
with torch.no_grad(): # Disable gradient calculations
|
90 |
outputs = model(**inputs)
|
91 |
logits = outputs.logits
|
92 |
+
|
93 |
# Get predictions from the logits (choose the class with the highest logit)
|
94 |
+
predictions = torch.argmax(logits, dim=-1).cpu().numpy()
|
95 |
+
|
96 |
|
97 |
#--------------------------------------------------------------------------------------------
|
98 |
# YOUR MODEL INFERENCE STOPS HERE
|