Spaces:
Sleeping
Sleeping
File size: 8,998 Bytes
7370e5c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
---
comments: true
description: Learn how to use Ultralytics YOLOv8 for real-time object blurring to enhance privacy and focus in your images and videos.
keywords: YOLOv8, object blurring, real-time processing, privacy protection, image manipulation, video editing, Ultralytics
---
# Object Blurring using Ultralytics YOLOv8 🚀
## What is Object Blurring?
Object blurring with [Ultralytics YOLOv8](https://github.com/ultralytics/ultralytics/) involves applying a blurring effect to specific detected objects in an image or video. This can be achieved using the YOLOv8 model capabilities to identify and manipulate objects within a given scene.
<p align="center">
<br>
<iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/ydGdibB5Mds"
title="YouTube video player" frameborder="0"
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
allowfullscreen>
</iframe>
<br>
<strong>Watch:</strong> Object Blurring using Ultralytics YOLOv8
</p>
## Advantages of Object Blurring?
- **Privacy Protection**: Object blurring is an effective tool for safeguarding privacy by concealing sensitive or personally identifiable information in images or videos.
- **Selective Focus**: YOLOv8 allows for selective blurring, enabling users to target specific objects, ensuring a balance between privacy and retaining relevant visual information.
- **Real-time Processing**: YOLOv8's efficiency enables object blurring in real-time, making it suitable for applications requiring on-the-fly privacy enhancements in dynamic environments.
!!! Example "Object Blurring using YOLOv8 Example"
=== "Object Blurring"
```python
import cv2
from ultralytics import YOLO
from ultralytics.utils.plotting import Annotator, colors
model = YOLO("yolov8n.pt")
names = model.names
cap = cv2.VideoCapture("path/to/video/file.mp4")
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
# Blur ratio
blur_ratio = 50
# Video writer
video_writer = cv2.VideoWriter("object_blurring_output.avi", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))
while cap.isOpened():
success, im0 = cap.read()
if not success:
print("Video frame is empty or video processing has been successfully completed.")
break
results = model.predict(im0, show=False)
boxes = results[0].boxes.xyxy.cpu().tolist()
clss = results[0].boxes.cls.cpu().tolist()
annotator = Annotator(im0, line_width=2, example=names)
if boxes is not None:
for box, cls in zip(boxes, clss):
annotator.box_label(box, color=colors(int(cls), True), label=names[int(cls)])
obj = im0[int(box[1]) : int(box[3]), int(box[0]) : int(box[2])]
blur_obj = cv2.blur(obj, (blur_ratio, blur_ratio))
im0[int(box[1]) : int(box[3]), int(box[0]) : int(box[2])] = blur_obj
cv2.imshow("ultralytics", im0)
video_writer.write(im0)
if cv2.waitKey(1) & 0xFF == ord("q"):
break
cap.release()
video_writer.release()
cv2.destroyAllWindows()
```
### Arguments `model.predict`
| Name | Type | Default | Description |
| --------------- | -------------- | ---------------------- | -------------------------------------------------------------------------- |
| `source` | `str` | `'ultralytics/assets'` | source directory for images or videos |
| `conf` | `float` | `0.25` | object confidence threshold for detection |
| `iou` | `float` | `0.7` | intersection over union (IoU) threshold for NMS |
| `imgsz` | `int or tuple` | `640` | image size as scalar or (h, w) list, i.e. (640, 480) |
| `half` | `bool` | `False` | use half precision (FP16) |
| `device` | `None or str` | `None` | device to run on, i.e. cuda device=0/1/2/3 or device=cpu |
| `max_det` | `int` | `300` | maximum number of detections per image |
| `vid_stride` | `bool` | `False` | video frame-rate stride |
| `stream_buffer` | `bool` | `False` | buffer all streaming frames (True) or return the most recent frame (False) |
| `visualize` | `bool` | `False` | visualize model features |
| `augment` | `bool` | `False` | apply image augmentation to prediction sources |
| `agnostic_nms` | `bool` | `False` | class-agnostic NMS |
| `classes` | `list[int]` | `None` | filter results by class, i.e. classes=0, or classes=[0,2,3] |
| `retina_masks` | `bool` | `False` | use high-resolution segmentation masks |
| `embed` | `list[int]` | `None` | return feature vectors/embeddings from given layers |
## FAQ
### What is object blurring with Ultralytics YOLOv8?
Object blurring with [Ultralytics YOLOv8](https://github.com/ultralytics/ultralytics/) involves automatically detecting and applying a blurring effect to specific objects in images or videos. This technique enhances privacy by concealing sensitive information while retaining relevant visual data. YOLOv8's real-time processing capabilities make it suitable for applications requiring immediate privacy protection and selective focus adjustments.
### How can I implement real-time object blurring using YOLOv8?
To implement real-time object blurring with YOLOv8, follow the provided Python example. This involves using YOLOv8 for object detection and OpenCV for applying the blur effect. Here's a simplified version:
```python
import cv2
from ultralytics import YOLO
model = YOLO("yolov8n.pt")
cap = cv2.VideoCapture("path/to/video/file.mp4")
while cap.isOpened():
success, im0 = cap.read()
if not success:
break
results = model.predict(im0, show=False)
for box in results[0].boxes.xyxy.cpu().tolist():
obj = im0[int(box[1]) : int(box[3]), int(box[0]) : int(box[2])]
im0[int(box[1]) : int(box[3]), int(box[0]) : int(box[2])] = cv2.blur(obj, (50, 50))
cv2.imshow("YOLOv8 Blurring", im0)
if cv2.waitKey(1) & 0xFF == ord("q"):
break
cap.release()
cv2.destroyAllWindows()
```
### What are the benefits of using Ultralytics YOLOv8 for object blurring?
Ultralytics YOLOv8 offers several advantages for object blurring:
- **Privacy Protection**: Effectively obscure sensitive or identifiable information.
- **Selective Focus**: Target specific objects for blurring, maintaining essential visual content.
- **Real-time Processing**: Execute object blurring efficiently in dynamic environments, suitable for instant privacy enhancements.
For more detailed applications, check the [advantages of object blurring section](#advantages-of-object-blurring).
### Can I use Ultralytics YOLOv8 to blur faces in a video for privacy reasons?
Yes, Ultralytics YOLOv8 can be configured to detect and blur faces in videos to protect privacy. By training or using a pre-trained model to specifically recognize faces, the detection results can be processed with OpenCV to apply a blur effect. Refer to our guide on [object detection with YOLOv8](https://docs.ultralytics.com/models/yolov8) and modify the code to target face detection.
### How does YOLOv8 compare to other object detection models like Faster R-CNN for object blurring?
Ultralytics YOLOv8 typically outperforms models like Faster R-CNN in terms of speed, making it more suitable for real-time applications. While both models offer accurate detection, YOLOv8's architecture is optimized for rapid inference, which is critical for tasks like real-time object blurring. Learn more about the technical differences and performance metrics in our [YOLOv8 documentation](https://docs.ultralytics.com/models/yolov8).
|