File size: 17,732 Bytes
7370e5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
---

comments: true
description: Learn how to run inference using the Ultralytics HUB Inference API. Includes examples in Python and cURL for quick integration.
keywords: Ultralytics, HUB, Inference API, Python, cURL, REST API, YOLO, image processing, machine learning, AI integration
---


# Ultralytics HUB Inference API

After you [train a model](./models.md#train-model), you can use the [Shared Inference API](#shared-inference-api) for free. If you are a [Pro](./pro.md) user, you can access the [Dedicated Inference API](#dedicated-inference-api). The [Ultralytics HUB](https://ultralytics.com/hub) Inference API allows you to run inference through our REST API without the need to install and set up the Ultralytics YOLO environment locally.

![Ultralytics HUB screenshot of the Deploy tab inside the Model page with an arrow pointing to the Dedicated Inference API card and one to the Shared Inference API card](https://raw.githubusercontent.com/ultralytics/assets/main/docs/hub/inference-api/hub_inference_api_1.jpg)

<p align="center">
  <iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/OpWpBI35A5Y"

    title="YouTube video player" frameborder="0"

    allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"

    allowfullscreen>
  </iframe>
  <br>
  <strong>Watch:</strong> Ultralytics HUB Inference API Walkthrough
</p>

## Dedicated Inference API

In response to high demand and widespread interest, we are thrilled to unveil the [Ultralytics HUB](https://ultralytics.com/hub) Dedicated Inference API, offering single-click deployment in a dedicated environment for our [Pro](./pro.md) users!

!!! note "Note"

    We are excited to offer this feature FREE during our public beta as part of the [Pro Plan](./pro.md), with paid tiers possible in the future.


- **Global Coverage:** Deployed across 38 regions worldwide, ensuring low-latency access from any location. [See the full list of Google Cloud regions](https://cloud.google.com/about/locations).
- **Google Cloud Run-Backed:** Backed by Google Cloud Run, providing infinitely scalable and highly reliable infrastructure.
- **High Speed:** Sub-100ms latency is possible for YOLOv8n inference at 640 resolution from nearby regions based on Ultralytics testing.
- **Enhanced Security:** Provides robust security features to protect your data and ensure compliance with industry standards. [Learn more about Google Cloud security](https://cloud.google.com/security).

To use the [Ultralytics HUB](https://ultralytics.com/hub) Dedicated Inference API, click on the **Start Endpoint** button. Next, use the unique endpoint URL as described in the guides below.

![Ultralytics HUB screenshot of the Deploy tab inside the Model page with an arrow pointing to the Start Endpoint button in Dedicated Inference API card](https://raw.githubusercontent.com/ultralytics/assets/main/docs/hub/inference-api/hub_dedicated_inference_api_1.jpg)

!!! tip "Tip"

    Choose the region with the lowest latency for the best performance as described in the [documentation](https://docs.ultralytics.com/reference/hub/google/__init__).


To shut down the dedicated endpoint, click on the **Stop Endpoint** button.

![Ultralytics HUB screenshot of the Deploy tab inside the Model page with an arrow pointing to the Stop Endpoint button in Dedicated Inference API card](https://raw.githubusercontent.com/ultralytics/assets/main/docs/hub/inference-api/hub_dedicated_inference_api_2.jpg)

## Shared Inference API

To use the [Ultralytics HUB](https://ultralytics.com/hub) Shared Inference API, follow the guides below.

Free users have the following usage limits:

- 100 calls / hour
- 1000 calls / month

[Pro](./pro.md) users have the following usage limits:

- 1000 calls / hour
- 10000 calls / month

## Python

To access the [Ultralytics HUB](https://ultralytics.com/hub) Inference API using Python, use the following code:

```python

import requests



# API URL, use actual MODEL_ID

url = "https://api.ultralytics.com/v1/predict/MODEL_ID"



# Headers, use actual API_KEY

headers = {"x-api-key": "API_KEY"}



# Inference arguments (optional)

data = {"imgsz": 640, "conf": 0.25, "iou": 0.45}



# Load image and send request

with open("path/to/image.jpg", "rb") as image_file:

    files = {"file": image_file}

    response = requests.post(url, headers=headers, files=files, data=data)



print(response.json())

```

!!! note "Note"

    Replace `MODEL_ID` with the desired model ID, `API_KEY` with your actual API key, and `path/to/image.jpg` with the path to the image you want to run inference on.


    If you are using our [Dedicated Inference API](#dedicated-inference-api), replace the `url` as well.


## cURL

To access the [Ultralytics HUB](https://ultralytics.com/hub) Inference API using cURL, use the following code:

```bash

curl -X POST "https://api.ultralytics.com/v1/predict/MODEL_ID" \

	-H "x-api-key: API_KEY" \

	-F "file=@/path/to/image.jpg" \

	-F "imgsz=640" \

	-F "conf=0.25" \

	-F "iou=0.45"

```

!!! note "Note"

    Replace `MODEL_ID` with the desired model ID, `API_KEY` with your actual API key, and `path/to/image.jpg` with the path to the image you want to run inference on.


    If you are using our [Dedicated Inference API](#dedicated-inference-api), replace the `url` as well.


## Arguments

See the table below for a full list of available inference arguments.

| Argument | Default | Type    | Description                                                          |
| -------- | ------- | ------- | -------------------------------------------------------------------- |
| `file`   |         | `file`  | Image or video file to be used for inference.                        |
| `imgsz`  | `640`   | `int`   | Size of the input image, valid range is `32` - `1280` pixels.        |
| `conf`   | `0.25`  | `float` | Confidence threshold for predictions, valid range `0.01` - `1.0`.    |
| `iou`    | `0.45`  | `float` | Intersection over Union (IoU) threshold, valid range `0.0` - `0.95`. |

## Response

The [Ultralytics HUB](https://ultralytics.com/hub) Inference API returns a JSON response.

### Classification

!!! Example "Classification Model"

    === "`ultralytics`"


        ```python

        from ultralytics import YOLO


        # Load model

        model = YOLO("yolov8n-cls.pt")


        # Run inference

        results = model("image.jpg")


        # Print image.jpg results in JSON format

        print(results[0].tojson())

        ```


    === "cURL"


        ```bash

        curl -X POST "https://api.ultralytics.com/v1/predict/MODEL_ID" \

            -H "x-api-key: API_KEY" \

            -F "file=@/path/to/image.jpg" \

            -F "imgsz=640" \

            -F "conf=0.25" \

            -F "iou=0.45"

        ```


    === "Python"


        ```python

        import requests


        # API URL, use actual MODEL_ID

        url = "https://api.ultralytics.com/v1/predict/MODEL_ID"


        # Headers, use actual API_KEY

        headers = {"x-api-key": "API_KEY"}


        # Inference arguments (optional)

        data = {"imgsz": 640, "conf": 0.25, "iou": 0.45}


        # Load image and send request

        with open("path/to/image.jpg", "rb") as image_file:

            files = {"file": image_file}

            response = requests.post(url, headers=headers, files=files, data=data)


        print(response.json())

        ```


    === "Response"


        ```json

        {

          "images": [

            {

              "results": [

                {

                  "class": 0,

                  "name": "person",

                  "confidence": 0.92

                }

              ],

              "shape": [

                750,

                600

              ],

              "speed": {

                "inference": 200.8,

                "postprocess": 0.8,

                "preprocess": 2.8

              }

            }

          ],

          "metadata": ...

        }

        ```


### Detection

!!! Example "Detection Model"

    === "`ultralytics`"


        ```python

        from ultralytics import YOLO


        # Load model

        model = YOLO("yolov8n.pt")


        # Run inference

        results = model("image.jpg")


        # Print image.jpg results in JSON format

        print(results[0].tojson())

        ```


    === "cURL"


        ```bash

        curl -X POST "https://api.ultralytics.com/v1/predict/MODEL_ID" \

            -H "x-api-key: API_KEY" \

            -F "file=@/path/to/image.jpg" \

            -F "imgsz=640" \

            -F "conf=0.25" \

            -F "iou=0.45"

        ```


    === "Python"


        ```python

        import requests


        # API URL, use actual MODEL_ID

        url = "https://api.ultralytics.com/v1/predict/MODEL_ID"


        # Headers, use actual API_KEY

        headers = {"x-api-key": "API_KEY"}


        # Inference arguments (optional)

        data = {"imgsz": 640, "conf": 0.25, "iou": 0.45}


        # Load image and send request

        with open("path/to/image.jpg", "rb") as image_file:

            files = {"file": image_file}

            response = requests.post(url, headers=headers, files=files, data=data)


        print(response.json())

        ```


    === "Response"


        ```json

        {

          "images": [

            {

              "results": [

                {

                  "class": 0,

                  "name": "person",

                  "confidence": 0.92,

                  "box": {

                    "x1": 118,

                    "x2": 416,

                    "y1": 112,

                    "y2": 660

                  }

                }

              ],

              "shape": [

                750,

                600

              ],

              "speed": {

                "inference": 200.8,

                "postprocess": 0.8,

                "preprocess": 2.8

              }

            }

          ],

          "metadata": ...

        }

        ```


### OBB

!!! Example "OBB Model"

    === "`ultralytics`"


        ```python

        from ultralytics import YOLO


        # Load model

        model = YOLO("yolov8n-obb.pt")


        # Run inference

        results = model("image.jpg")


        # Print image.jpg results in JSON format

        print(results[0].tojson())

        ```


    === "cURL"


        ```bash

        curl -X POST "https://api.ultralytics.com/v1/predict/MODEL_ID" \

            -H "x-api-key: API_KEY" \

            -F "file=@/path/to/image.jpg" \

            -F "imgsz=640" \

            -F "conf=0.25" \

            -F "iou=0.45"

        ```


    === "Python"


        ```python

        import requests


        # API URL, use actual MODEL_ID

        url = "https://api.ultralytics.com/v1/predict/MODEL_ID"


        # Headers, use actual API_KEY

        headers = {"x-api-key": "API_KEY"}


        # Inference arguments (optional)

        data = {"imgsz": 640, "conf": 0.25, "iou": 0.45}


        # Load image and send request

        with open("path/to/image.jpg", "rb") as image_file:

            files = {"file": image_file}

            response = requests.post(url, headers=headers, files=files, data=data)


        print(response.json())

        ```


    === "Response"


        ```json

        {

          "images": [

            {

              "results": [

                {

                  "class": 0,

                  "name": "person",

                  "confidence": 0.92,

                  "box": {

                    "x1": 374.85565,

                    "x2": 392.31824,

                    "x3": 412.81805,

                    "x4": 395.35547,

                    "y1": 264.40704,

                    "y2": 267.45728,

                    "y3": 150.0966,

                    "y4": 147.04634

                  }

                }

              ],

              "shape": [

                750,

                600

              ],

              "speed": {

                "inference": 200.8,

                "postprocess": 0.8,

                "preprocess": 2.8

              }

            }

          ],

          "metadata": ...

        }

        ```


### Segmentation

!!! Example "Segmentation Model"

    === "`ultralytics`"


        ```python

        from ultralytics import YOLO


        # Load model

        model = YOLO("yolov8n-seg.pt")


        # Run inference

        results = model("image.jpg")


        # Print image.jpg results in JSON format

        print(results[0].tojson())

        ```


    === "cURL"


        ```bash

        curl -X POST "https://api.ultralytics.com/v1/predict/MODEL_ID" \

            -H "x-api-key: API_KEY" \

            -F "file=@/path/to/image.jpg" \

            -F "imgsz=640" \

            -F "conf=0.25" \

            -F "iou=0.45"

        ```


    === "Python"


        ```python

        import requests


        # API URL, use actual MODEL_ID

        url = "https://api.ultralytics.com/v1/predict/MODEL_ID"


        # Headers, use actual API_KEY

        headers = {"x-api-key": "API_KEY"}


        # Inference arguments (optional)

        data = {"imgsz": 640, "conf": 0.25, "iou": 0.45}


        # Load image and send request

        with open("path/to/image.jpg", "rb") as image_file:

            files = {"file": image_file}

            response = requests.post(url, headers=headers, files=files, data=data)


        print(response.json())

        ```


    === "Response"


        ```json

        {

          "images": [

            {

              "results": [

                {

                  "class": 0,

                  "name": "person",

                  "confidence": 0.92,

                  "box": {

                    "x1": 118,

                    "x2": 416,

                    "y1": 112,

                    "y2": 660

                  },

                  "segments": {

                    "x": [

                      266.015625,

                      266.015625,

                      258.984375,

                      ...

                    ],

                    "y": [

                      110.15625,

                      113.67188262939453,

                      120.70311737060547,

                      ...

                    ]

                  }

                }

              ],

              "shape": [

                750,

                600

              ],

              "speed": {

                "inference": 200.8,

                "postprocess": 0.8,

                "preprocess": 2.8

              }

            }

          ],

          "metadata": ...

        }

        ```


### Pose

!!! Example "Pose Model"

    === "`ultralytics`"


        ```python

        from ultralytics import YOLO


        # Load model

        model = YOLO("yolov8n-pose.pt")


        # Run inference

        results = model("image.jpg")


        # Print image.jpg results in JSON format

        print(results[0].tojson())

        ```


    === "cURL"


        ```bash

        curl -X POST "https://api.ultralytics.com/v1/predict/MODEL_ID" \

            -H "x-api-key: API_KEY" \

            -F "file=@/path/to/image.jpg" \

            -F "imgsz=640" \

            -F "conf=0.25" \

            -F "iou=0.45"

        ```


    === "Python"


        ```python

        import requests


        # API URL, use actual MODEL_ID

        url = "https://api.ultralytics.com/v1/predict/MODEL_ID"


        # Headers, use actual API_KEY

        headers = {"x-api-key": "API_KEY"}


        # Inference arguments (optional)

        data = {"imgsz": 640, "conf": 0.25, "iou": 0.45}


        # Load image and send request

        with open("path/to/image.jpg", "rb") as image_file:

            files = {"file": image_file}

            response = requests.post(url, headers=headers, files=files, data=data)


        print(response.json())

        ```


    === "Response"


        ```json

        {

          "images": [

            {

              "results": [

                {

                  "class": 0,

                  "name": "person",

                  "confidence": 0.92,

                  "box": {

                    "x1": 118,

                    "x2": 416,

                    "y1": 112,

                    "y2": 660

                  },

                  "keypoints": {

                    "visible": [

                      0.9909399747848511,

                      0.8162999749183655,

                      0.9872099757194519,

                      ...

                    ],

                    "x": [

                      316.3871765136719,

                      315.9374694824219,

                      304.878173828125,

                      ...

                    ],

                    "y": [

                      156.4207763671875,

                      148.05775451660156,

                      144.93240356445312,

                      ...

                    ]

                  }

                }

              ],

              "shape": [

                750,

                600

              ],

              "speed": {

                "inference": 200.8,

                "postprocess": 0.8,

                "preprocess": 2.8

              }

            }

          ],

          "metadata": ...

        }

        ```