Spaces:
Sleeping
Sleeping
File size: 17,732 Bytes
7370e5c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 |
---
comments: true
description: Learn how to run inference using the Ultralytics HUB Inference API. Includes examples in Python and cURL for quick integration.
keywords: Ultralytics, HUB, Inference API, Python, cURL, REST API, YOLO, image processing, machine learning, AI integration
---
# Ultralytics HUB Inference API
After you [train a model](./models.md#train-model), you can use the [Shared Inference API](#shared-inference-api) for free. If you are a [Pro](./pro.md) user, you can access the [Dedicated Inference API](#dedicated-inference-api). The [Ultralytics HUB](https://ultralytics.com/hub) Inference API allows you to run inference through our REST API without the need to install and set up the Ultralytics YOLO environment locally.

<p align="center">
<iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/OpWpBI35A5Y"
title="YouTube video player" frameborder="0"
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
allowfullscreen>
</iframe>
<br>
<strong>Watch:</strong> Ultralytics HUB Inference API Walkthrough
</p>
## Dedicated Inference API
In response to high demand and widespread interest, we are thrilled to unveil the [Ultralytics HUB](https://ultralytics.com/hub) Dedicated Inference API, offering single-click deployment in a dedicated environment for our [Pro](./pro.md) users!
!!! note "Note"
We are excited to offer this feature FREE during our public beta as part of the [Pro Plan](./pro.md), with paid tiers possible in the future.
- **Global Coverage:** Deployed across 38 regions worldwide, ensuring low-latency access from any location. [See the full list of Google Cloud regions](https://cloud.google.com/about/locations).
- **Google Cloud Run-Backed:** Backed by Google Cloud Run, providing infinitely scalable and highly reliable infrastructure.
- **High Speed:** Sub-100ms latency is possible for YOLOv8n inference at 640 resolution from nearby regions based on Ultralytics testing.
- **Enhanced Security:** Provides robust security features to protect your data and ensure compliance with industry standards. [Learn more about Google Cloud security](https://cloud.google.com/security).
To use the [Ultralytics HUB](https://ultralytics.com/hub) Dedicated Inference API, click on the **Start Endpoint** button. Next, use the unique endpoint URL as described in the guides below.

!!! tip "Tip"
Choose the region with the lowest latency for the best performance as described in the [documentation](https://docs.ultralytics.com/reference/hub/google/__init__).
To shut down the dedicated endpoint, click on the **Stop Endpoint** button.

## Shared Inference API
To use the [Ultralytics HUB](https://ultralytics.com/hub) Shared Inference API, follow the guides below.
Free users have the following usage limits:
- 100 calls / hour
- 1000 calls / month
[Pro](./pro.md) users have the following usage limits:
- 1000 calls / hour
- 10000 calls / month
## Python
To access the [Ultralytics HUB](https://ultralytics.com/hub) Inference API using Python, use the following code:
```python
import requests
# API URL, use actual MODEL_ID
url = "https://api.ultralytics.com/v1/predict/MODEL_ID"
# Headers, use actual API_KEY
headers = {"x-api-key": "API_KEY"}
# Inference arguments (optional)
data = {"imgsz": 640, "conf": 0.25, "iou": 0.45}
# Load image and send request
with open("path/to/image.jpg", "rb") as image_file:
files = {"file": image_file}
response = requests.post(url, headers=headers, files=files, data=data)
print(response.json())
```
!!! note "Note"
Replace `MODEL_ID` with the desired model ID, `API_KEY` with your actual API key, and `path/to/image.jpg` with the path to the image you want to run inference on.
If you are using our [Dedicated Inference API](#dedicated-inference-api), replace the `url` as well.
## cURL
To access the [Ultralytics HUB](https://ultralytics.com/hub) Inference API using cURL, use the following code:
```bash
curl -X POST "https://api.ultralytics.com/v1/predict/MODEL_ID" \
-H "x-api-key: API_KEY" \
-F "file=@/path/to/image.jpg" \
-F "imgsz=640" \
-F "conf=0.25" \
-F "iou=0.45"
```
!!! note "Note"
Replace `MODEL_ID` with the desired model ID, `API_KEY` with your actual API key, and `path/to/image.jpg` with the path to the image you want to run inference on.
If you are using our [Dedicated Inference API](#dedicated-inference-api), replace the `url` as well.
## Arguments
See the table below for a full list of available inference arguments.
| Argument | Default | Type | Description |
| -------- | ------- | ------- | -------------------------------------------------------------------- |
| `file` | | `file` | Image or video file to be used for inference. |
| `imgsz` | `640` | `int` | Size of the input image, valid range is `32` - `1280` pixels. |
| `conf` | `0.25` | `float` | Confidence threshold for predictions, valid range `0.01` - `1.0`. |
| `iou` | `0.45` | `float` | Intersection over Union (IoU) threshold, valid range `0.0` - `0.95`. |
## Response
The [Ultralytics HUB](https://ultralytics.com/hub) Inference API returns a JSON response.
### Classification
!!! Example "Classification Model"
=== "`ultralytics`"
```python
from ultralytics import YOLO
# Load model
model = YOLO("yolov8n-cls.pt")
# Run inference
results = model("image.jpg")
# Print image.jpg results in JSON format
print(results[0].tojson())
```
=== "cURL"
```bash
curl -X POST "https://api.ultralytics.com/v1/predict/MODEL_ID" \
-H "x-api-key: API_KEY" \
-F "file=@/path/to/image.jpg" \
-F "imgsz=640" \
-F "conf=0.25" \
-F "iou=0.45"
```
=== "Python"
```python
import requests
# API URL, use actual MODEL_ID
url = "https://api.ultralytics.com/v1/predict/MODEL_ID"
# Headers, use actual API_KEY
headers = {"x-api-key": "API_KEY"}
# Inference arguments (optional)
data = {"imgsz": 640, "conf": 0.25, "iou": 0.45}
# Load image and send request
with open("path/to/image.jpg", "rb") as image_file:
files = {"file": image_file}
response = requests.post(url, headers=headers, files=files, data=data)
print(response.json())
```
=== "Response"
```json
{
"images": [
{
"results": [
{
"class": 0,
"name": "person",
"confidence": 0.92
}
],
"shape": [
750,
600
],
"speed": {
"inference": 200.8,
"postprocess": 0.8,
"preprocess": 2.8
}
}
],
"metadata": ...
}
```
### Detection
!!! Example "Detection Model"
=== "`ultralytics`"
```python
from ultralytics import YOLO
# Load model
model = YOLO("yolov8n.pt")
# Run inference
results = model("image.jpg")
# Print image.jpg results in JSON format
print(results[0].tojson())
```
=== "cURL"
```bash
curl -X POST "https://api.ultralytics.com/v1/predict/MODEL_ID" \
-H "x-api-key: API_KEY" \
-F "file=@/path/to/image.jpg" \
-F "imgsz=640" \
-F "conf=0.25" \
-F "iou=0.45"
```
=== "Python"
```python
import requests
# API URL, use actual MODEL_ID
url = "https://api.ultralytics.com/v1/predict/MODEL_ID"
# Headers, use actual API_KEY
headers = {"x-api-key": "API_KEY"}
# Inference arguments (optional)
data = {"imgsz": 640, "conf": 0.25, "iou": 0.45}
# Load image and send request
with open("path/to/image.jpg", "rb") as image_file:
files = {"file": image_file}
response = requests.post(url, headers=headers, files=files, data=data)
print(response.json())
```
=== "Response"
```json
{
"images": [
{
"results": [
{
"class": 0,
"name": "person",
"confidence": 0.92,
"box": {
"x1": 118,
"x2": 416,
"y1": 112,
"y2": 660
}
}
],
"shape": [
750,
600
],
"speed": {
"inference": 200.8,
"postprocess": 0.8,
"preprocess": 2.8
}
}
],
"metadata": ...
}
```
### OBB
!!! Example "OBB Model"
=== "`ultralytics`"
```python
from ultralytics import YOLO
# Load model
model = YOLO("yolov8n-obb.pt")
# Run inference
results = model("image.jpg")
# Print image.jpg results in JSON format
print(results[0].tojson())
```
=== "cURL"
```bash
curl -X POST "https://api.ultralytics.com/v1/predict/MODEL_ID" \
-H "x-api-key: API_KEY" \
-F "file=@/path/to/image.jpg" \
-F "imgsz=640" \
-F "conf=0.25" \
-F "iou=0.45"
```
=== "Python"
```python
import requests
# API URL, use actual MODEL_ID
url = "https://api.ultralytics.com/v1/predict/MODEL_ID"
# Headers, use actual API_KEY
headers = {"x-api-key": "API_KEY"}
# Inference arguments (optional)
data = {"imgsz": 640, "conf": 0.25, "iou": 0.45}
# Load image and send request
with open("path/to/image.jpg", "rb") as image_file:
files = {"file": image_file}
response = requests.post(url, headers=headers, files=files, data=data)
print(response.json())
```
=== "Response"
```json
{
"images": [
{
"results": [
{
"class": 0,
"name": "person",
"confidence": 0.92,
"box": {
"x1": 374.85565,
"x2": 392.31824,
"x3": 412.81805,
"x4": 395.35547,
"y1": 264.40704,
"y2": 267.45728,
"y3": 150.0966,
"y4": 147.04634
}
}
],
"shape": [
750,
600
],
"speed": {
"inference": 200.8,
"postprocess": 0.8,
"preprocess": 2.8
}
}
],
"metadata": ...
}
```
### Segmentation
!!! Example "Segmentation Model"
=== "`ultralytics`"
```python
from ultralytics import YOLO
# Load model
model = YOLO("yolov8n-seg.pt")
# Run inference
results = model("image.jpg")
# Print image.jpg results in JSON format
print(results[0].tojson())
```
=== "cURL"
```bash
curl -X POST "https://api.ultralytics.com/v1/predict/MODEL_ID" \
-H "x-api-key: API_KEY" \
-F "file=@/path/to/image.jpg" \
-F "imgsz=640" \
-F "conf=0.25" \
-F "iou=0.45"
```
=== "Python"
```python
import requests
# API URL, use actual MODEL_ID
url = "https://api.ultralytics.com/v1/predict/MODEL_ID"
# Headers, use actual API_KEY
headers = {"x-api-key": "API_KEY"}
# Inference arguments (optional)
data = {"imgsz": 640, "conf": 0.25, "iou": 0.45}
# Load image and send request
with open("path/to/image.jpg", "rb") as image_file:
files = {"file": image_file}
response = requests.post(url, headers=headers, files=files, data=data)
print(response.json())
```
=== "Response"
```json
{
"images": [
{
"results": [
{
"class": 0,
"name": "person",
"confidence": 0.92,
"box": {
"x1": 118,
"x2": 416,
"y1": 112,
"y2": 660
},
"segments": {
"x": [
266.015625,
266.015625,
258.984375,
...
],
"y": [
110.15625,
113.67188262939453,
120.70311737060547,
...
]
}
}
],
"shape": [
750,
600
],
"speed": {
"inference": 200.8,
"postprocess": 0.8,
"preprocess": 2.8
}
}
],
"metadata": ...
}
```
### Pose
!!! Example "Pose Model"
=== "`ultralytics`"
```python
from ultralytics import YOLO
# Load model
model = YOLO("yolov8n-pose.pt")
# Run inference
results = model("image.jpg")
# Print image.jpg results in JSON format
print(results[0].tojson())
```
=== "cURL"
```bash
curl -X POST "https://api.ultralytics.com/v1/predict/MODEL_ID" \
-H "x-api-key: API_KEY" \
-F "file=@/path/to/image.jpg" \
-F "imgsz=640" \
-F "conf=0.25" \
-F "iou=0.45"
```
=== "Python"
```python
import requests
# API URL, use actual MODEL_ID
url = "https://api.ultralytics.com/v1/predict/MODEL_ID"
# Headers, use actual API_KEY
headers = {"x-api-key": "API_KEY"}
# Inference arguments (optional)
data = {"imgsz": 640, "conf": 0.25, "iou": 0.45}
# Load image and send request
with open("path/to/image.jpg", "rb") as image_file:
files = {"file": image_file}
response = requests.post(url, headers=headers, files=files, data=data)
print(response.json())
```
=== "Response"
```json
{
"images": [
{
"results": [
{
"class": 0,
"name": "person",
"confidence": 0.92,
"box": {
"x1": 118,
"x2": 416,
"y1": 112,
"y2": 660
},
"keypoints": {
"visible": [
0.9909399747848511,
0.8162999749183655,
0.9872099757194519,
...
],
"x": [
316.3871765136719,
315.9374694824219,
304.878173828125,
...
],
"y": [
156.4207763671875,
148.05775451660156,
144.93240356445312,
...
]
}
}
],
"shape": [
750,
600
],
"speed": {
"inference": 200.8,
"postprocess": 0.8,
"preprocess": 2.8
}
}
],
"metadata": ...
}
```
|