File size: 21,864 Bytes
7370e5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
---

comments: true
description: Explore essential utilities in the Ultralytics package to speed up and enhance your workflows. Learn about data processing, annotations, conversions, and more.
keywords: Ultralytics, utilities, data processing, auto annotation, YOLO, dataset conversion, bounding boxes, image compression, machine learning tools
---


# Simple Utilities

<p align="center">
  <img src="https://github.com/ultralytics/ultralytics/assets/62214284/516112de-4567-49f8-b93f-b55a10b79dd7" alt="code with perspective">
</p>

The `ultralytics` package comes with a myriad of utilities that can support, enhance, and speed up your workflows. There are many more available, but here are some that will be useful for most developers. They're also a great reference point to use when learning to program.

<p align="center">
  <br>
  <iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/1bPY2LRG590"

    title="YouTube video player" frameborder="0"

    allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"

    allowfullscreen>
  </iframe>
  <br>
  <strong>Watch:</strong> Ultralytics Utilities | Auto Annotation, Explorer API and Dataset Conversion
</p>

## Data

### YOLO Data Explorer

[YOLO Explorer](../datasets/explorer/index.md) was added in the `8.1.0` anniversary update and is a powerful tool you can use to better understand your dataset. One of the key functions that YOLO Explorer provides, is the ability to use text queries to find object instances in your dataset.

### Auto Labeling / Annotations

Dataset annotation is a very resource intensive and time-consuming process. If you have a YOLO object detection model trained on a reasonable amount of data, you can use it and [SAM](../models/sam.md) to auto-annotate additional data (segmentation format).

```{ .py .annotate }

from ultralytics.data.annotator import auto_annotate



auto_annotate(  # (1)!

    data="path/to/new/data",

    det_model="yolov8n.pt",

    sam_model="mobile_sam.pt",

    device="cuda",

    output_dir="path/to/save_labels",

)

```

1. Nothing returns from this function

- [See the reference section for `annotator.auto_annotate`](../reference/data/annotator.md#ultralytics.data.annotator.auto_annotate) for more insight on how the function operates.

- Use in combination with the [function `segments2boxes`](#convert-segments-to-bounding-boxes) to generate object detection bounding boxes as well

### Convert Segmentation Masks into YOLO Format

![Segmentation Masks to YOLO Format](https://github.com/user-attachments/assets/1a823fc1-f3a1-4dd5-83e7-0b209df06fc3)

Use to convert a dataset of segmentation mask images to the `YOLO` segmentation format.
This function takes the directory containing the binary format mask images and converts them into YOLO segmentation format.

The converted masks will be saved in the specified output directory.

```python

from ultralytics.data.converter import convert_segment_masks_to_yolo_seg



# The classes here is the total classes in the dataset, for COCO dataset we have 80 classes

convert_segment_masks_to_yolo_seg(masks_dir="path/to/masks_dir", output_dir="path/to/output_dir", classes=80)

```

### Convert COCO into YOLO Format

Use to convert COCO JSON annotations into proper YOLO format. For object detection (bounding box) datasets, `use_segments` and `use_keypoints` should both be `False`

```{ .py .annotate }

from ultralytics.data.converter import convert_coco



convert_coco(  # (1)!

    "../datasets/coco/annotations/",

    use_segments=False,

    use_keypoints=False,

    cls91to80=True,

)

```

1. Nothing returns from this function

For additional information about the `convert_coco` function, [visit the reference page](../reference/data/converter.md#ultralytics.data.converter.convert_coco)

### Get Bounding Box Dimensions

```{.py .annotate }

from ultralytics.utils.plotting import Annotator

from ultralytics import YOLO

import cv2



model = YOLO('yolov8n.pt')  # Load pretrain or fine-tune model



# Process the image

source = cv2.imread('path/to/image.jpg')

results = model(source)



# Extract results

annotator = Annotator(source, example=model.names)



for box in results[0].boxes.xyxy.cpu():

    width, height, area = annotator.get_bbox_dimension(box)

    print("Bounding Box Width {}, Height {}, Area {}".format(

        width.item(), height.item(), area.item()))

```

### Convert Bounding Boxes to Segments

With existing `x y w h` bounding box data, convert to segments using the `yolo_bbox2segment` function. The files for images and annotations need to be organized like this:

```

data

|__ images

    β”œβ”€ 001.jpg

    β”œβ”€ 002.jpg

    β”œβ”€ ..

    └─ NNN.jpg

|__ labels

    β”œβ”€ 001.txt

    β”œβ”€ 002.txt

    β”œβ”€ ..

    └─ NNN.txt

```

```{ .py .annotate }

from ultralytics.data.converter import yolo_bbox2segment



yolo_bbox2segment(  # (1)!

    im_dir="path/to/images",

    save_dir=None,  # saved to "labels-segment" in images directory

    sam_model="sam_b.pt",

)

```

1. Nothing returns from this function

[Visit the `yolo_bbox2segment` reference page](../reference/data/converter.md#ultralytics.data.converter.yolo_bbox2segment) for more information regarding the function.

### Convert Segments to Bounding Boxes

If you have a dataset that uses the [segmentation dataset format](../datasets/segment/index.md) you can easily convert these into up-right (or horizontal) bounding boxes (`x y w h` format) with this function.

```python

import numpy as np



from ultralytics.utils.ops import segments2boxes



segments = np.array(

    [

        [805, 392, 797, 400, ..., 808, 714, 808, 392],

        [115, 398, 113, 400, ..., 150, 400, 149, 298],

        [267, 412, 265, 413, ..., 300, 413, 299, 412],

    ]

)



segments2boxes([s.reshape(-1, 2) for s in segments])

# >>> array([[ 741.66, 631.12, 133.31, 479.25],

#           [ 146.81, 649.69, 185.62, 502.88],

#           [ 281.81, 636.19, 118.12, 448.88]],

#           dtype=float32) # xywh bounding boxes

```

To understand how this function works, visit the [reference page](../reference/utils/ops.md#ultralytics.utils.ops.segments2boxes)

## Utilities

### Image Compression

Compresses a single image file to reduced size while preserving its aspect ratio and quality. If the input image is smaller than the maximum dimension, it will not be resized.

```{ .py .annotate }

from pathlib import Path



from ultralytics.data.utils import compress_one_image



for f in Path("path/to/dataset").rglob("*.jpg"):

    compress_one_image(f)  # (1)!

```

1. Nothing returns from this function

### Auto-split Dataset

Automatically split a dataset into `train`/`val`/`test` splits and save the resulting splits into `autosplit_*.txt` files. This function will use random sampling, which is not included when using [`fraction` argument for training](../modes/train.md#train-settings).

```{ .py .annotate }

from ultralytics.data.utils import autosplit



autosplit(  # (1)!

    path="path/to/images",

    weights=(0.9, 0.1, 0.0),  # (train, validation, test) fractional splits

    annotated_only=False,  # split only images with annotation file when True

)

```

1. Nothing returns from this function

See the [Reference page](../reference/data/utils.md#ultralytics.data.utils.autosplit) for additional details on this function.

### Segment-polygon to Binary Mask

Convert a single polygon (as list) to a binary mask of the specified image size. Polygon in the form of `[N, 2]` with `N` as the number of `(x, y)` points defining the polygon contour.

!!! warning

    `N` <b><u>must always</b></u> be even.


```python

import numpy as np



from ultralytics.data.utils import polygon2mask



imgsz = (1080, 810)

polygon = np.array([805, 392, 797, 400, ..., 808, 714, 808, 392])  # (238, 2)



mask = polygon2mask(

    imgsz,  # tuple

    [polygon],  # input as list

    color=255,  # 8-bit binary

    downsample_ratio=1,

)

```

## Bounding Boxes

### Bounding Box (horizontal) Instances

To manage bounding box data, the `Bboxes` class will help to convert between box coordinate formatting, scale box dimensions, calculate areas, include offsets, and more!

```python

import numpy as np



from ultralytics.utils.instance import Bboxes



boxes = Bboxes(

    bboxes=np.array(

        [

            [22.878, 231.27, 804.98, 756.83],

            [48.552, 398.56, 245.35, 902.71],

            [669.47, 392.19, 809.72, 877.04],

            [221.52, 405.8, 344.98, 857.54],

            [0, 550.53, 63.01, 873.44],

            [0.0584, 254.46, 32.561, 324.87],

        ]

    ),

    format="xyxy",

)



boxes.areas()

# >>> array([ 4.1104e+05,       99216,       68000,       55772,       20347,      2288.5])



boxes.convert("xywh")

print(boxes.bboxes)

# >>> array(

#     [[ 413.93, 494.05,  782.1, 525.56],

#      [ 146.95, 650.63,  196.8, 504.15],

#      [  739.6, 634.62, 140.25, 484.85],

#      [ 283.25, 631.67, 123.46, 451.74],

#      [ 31.505, 711.99,  63.01, 322.91],

#      [  16.31, 289.67, 32.503,  70.41]]

# )

```

See the [`Bboxes` reference section](../reference/utils/instance.md#ultralytics.utils.instance.Bboxes) for more attributes and methods available.

!!! tip

    Many of the following functions (and more) can be accessed using the [`Bboxes` class](#bounding-box-horizontal-instances) but if you prefer to work with the functions directly, see the next subsections on how to import these independently.


### Scaling Boxes

When scaling and image up or down, corresponding bounding box coordinates can be appropriately scaled to match using `ultralytics.utils.ops.scale_boxes`.

```{ .py .annotate }

import cv2 as cv

import numpy as np



from ultralytics.utils.ops import scale_boxes



image = cv.imread("ultralytics/assets/bus.jpg")

h, w, c = image.shape

resized = cv.resize(image, None, (), fx=1.2, fy=1.2)

new_h, new_w, _ = resized.shape



xyxy_boxes = np.array(

    [

        [22.878, 231.27, 804.98, 756.83],

        [48.552, 398.56, 245.35, 902.71],

        [669.47, 392.19, 809.72, 877.04],

        [221.52, 405.8, 344.98, 857.54],

        [0, 550.53, 63.01, 873.44],

        [0.0584, 254.46, 32.561, 324.87],

    ]

)



new_boxes = scale_boxes(

    img1_shape=(h, w),  # original image dimensions

    boxes=xyxy_boxes,  # boxes from original image

    img0_shape=(new_h, new_w),  # resized image dimensions (scale to)

    ratio_pad=None,

    padding=False,

    xywh=False,

)



print(new_boxes)  # (1)!

# >>> array(

#     [[  27.454,  277.52,  965.98,   908.2],

#     [   58.262,  478.27,  294.42,  1083.3],

#     [   803.36,  470.63,  971.66,  1052.4],

#     [   265.82,  486.96,  413.98,    1029],

#     [        0,  660.64,  75.612,  1048.1],

#     [   0.0701,  305.35,  39.073,  389.84]]

# )

```

1. Bounding boxes scaled for the new image size

### Bounding Box Format Conversions

#### XYXY β†’ XYWH

Convert bounding box coordinates from (x1, y1, x2, y2) format to (x, y, width, height) format where (x1, y1) is the top-left corner and (x2, y2) is the bottom-right corner.

```python

import numpy as np



from ultralytics.utils.ops import xyxy2xywh



xyxy_boxes = np.array(

    [

        [22.878, 231.27, 804.98, 756.83],

        [48.552, 398.56, 245.35, 902.71],

        [669.47, 392.19, 809.72, 877.04],

        [221.52, 405.8, 344.98, 857.54],

        [0, 550.53, 63.01, 873.44],

        [0.0584, 254.46, 32.561, 324.87],

    ]

)

xywh = xyxy2xywh(xyxy_boxes)



print(xywh)

# >>> array(

#     [[ 413.93,  494.05,   782.1, 525.56],

#     [  146.95,  650.63,   196.8, 504.15],

#     [   739.6,  634.62,  140.25, 484.85],

#     [  283.25,  631.67,  123.46, 451.74],

#     [  31.505,  711.99,   63.01, 322.91],

#     [   16.31,  289.67,  32.503,  70.41]]

# )

```

### All Bounding Box Conversions

```python

from ultralytics.utils.ops import (

    ltwh2xywh,

    ltwh2xyxy,

    xywh2ltwh,  # xywh β†’ top-left corner, w, h

    xywh2xyxy,

    xywhn2xyxy,  # normalized β†’ pixel

    xyxy2ltwh,  # xyxy β†’ top-left corner, w, h

    xyxy2xywhn,  # pixel β†’ normalized

)



for func in (ltwh2xywh, ltwh2xyxy, xywh2ltwh, xywh2xyxy, xywhn2xyxy, xyxy2ltwh, xyxy2xywhn):

    print(help(func))  # print function docstrings

```

See docstring for each function or visit the `ultralytics.utils.ops` [reference page](../reference/utils/ops.md) to read more about each function.

## Plotting

### Drawing Annotations

Ultralytics includes an Annotator class that can be used to annotate any kind of data. It's easiest to use with [object detection bounding boxes](../modes/predict.md#boxes), [pose key points](../modes/predict.md#keypoints), and [oriented bounding boxes](../modes/predict.md#obb).

#### Horizontal Bounding Boxes

```{ .py .annotate }

import cv2 as cv

import numpy as np



from ultralytics.utils.plotting import Annotator, colors



names = {  # (1)!

    0: "person",

    5: "bus",

    11: "stop sign",

}



image = cv.imread("ultralytics/assets/bus.jpg")

ann = Annotator(

    image,

    line_width=None,  # default auto-size

    font_size=None,  # default auto-size

    font="Arial.ttf",  # must be ImageFont compatible

    pil=False,  # use PIL, otherwise uses OpenCV

)



xyxy_boxes = np.array(

    [

        [5, 22.878, 231.27, 804.98, 756.83],  # class-idx x1 y1 x2 y2

        [0, 48.552, 398.56, 245.35, 902.71],

        [0, 669.47, 392.19, 809.72, 877.04],

        [0, 221.52, 405.8, 344.98, 857.54],

        [0, 0, 550.53, 63.01, 873.44],

        [11, 0.0584, 254.46, 32.561, 324.87],

    ]

)



for nb, box in enumerate(xyxy_boxes):

    c_idx, *box = box

    label = f"{str(nb).zfill(2)}:{names.get(int(c_idx))}"

    ann.box_label(box, label, color=colors(c_idx, bgr=True))



image_with_bboxes = ann.result()

```

1. Names can be used from `model.names` when [working with detection results](../modes/predict.md#working-with-results)

#### Oriented Bounding Boxes (OBB)

```python

import cv2 as cv

import numpy as np



from ultralytics.utils.plotting import Annotator, colors



obb_names = {10: "small vehicle"}

obb_image = cv.imread("datasets/dota8/images/train/P1142__1024__0___824.jpg")

obb_boxes = np.array(

    [

        [0, 635, 560, 919, 719, 1087, 420, 803, 261],  # class-idx x1 y1 x2 y2 x3 y2 x4 y4

        [0, 331, 19, 493, 260, 776, 70, 613, -171],

        [9, 869, 161, 886, 147, 851, 101, 833, 115],

    ]

)

ann = Annotator(

    obb_image,

    line_width=None,  # default auto-size

    font_size=None,  # default auto-size

    font="Arial.ttf",  # must be ImageFont compatible

    pil=False,  # use PIL, otherwise uses OpenCV

)

for obb in obb_boxes:

    c_idx, *obb = obb

    obb = np.array(obb).reshape(-1, 4, 2).squeeze()

    label = f"{obb_names.get(int(c_idx))}"

    ann.box_label(

        obb,

        label,

        color=colors(c_idx, True),

        rotated=True,

    )



image_with_obb = ann.result()

```

#### Bounding Boxes Circle Annotation ([Circle Label](https://docs.ultralytics.com/reference/utils/plotting/#ultralytics.utils.plotting.Annotator.circle_label))

```python

import cv2



from ultralytics import YOLO

from ultralytics.utils.plotting import Annotator, colors



model = YOLO("yolov8s.pt")

cap = cv2.VideoCapture("path/to/video/file.mp4")



w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))

writer = cv2.VideoWriter("Ultralytics circle annotation.avi", cv2.VideoWriter_fourcc(*"MJPG"), fps, (w, h))



while True:

    ret, im0 = cap.read()

    if not ret:

        break



    annotator = Annotator(im0, line_width=2)



    results = model.predict(im0)

    boxes = results[0].boxes.xyxy.cpu()

    clss = results[0].boxes.cls.cpu().tolist()



    for box, cls in zip(boxes, clss):

        x1, y1 = int((box[0] + box[2]) // 2), int((box[1] + box[3]) // 2)

        annotator.circle_label(box, label=model.names[int(cls)], color=colors(int(cls), True))



    writer.write(im0)

    cv2.imshow("Ultralytics circle annotation", im0)



    if cv2.waitKey(1) & 0xFF == ord("q"):

        break



writer.release()

cap.release()

cv2.destroyAllWindows()

```

#### Bounding Boxes Text Annotation ([Text Label](https://docs.ultralytics.com/reference/utils/plotting/#ultralytics.utils.plotting.Annotator.text_label))

```python

import cv2



from ultralytics import YOLO

from ultralytics.utils.plotting import Annotator, colors



model = YOLO("yolov8s.pt")

cap = cv2.VideoCapture("path/to/video/file.mp4")



w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))

writer = cv2.VideoWriter("Ultralytics text annotation.avi", cv2.VideoWriter_fourcc(*"MJPG"), fps, (w, h))



while True:

    ret, im0 = cap.read()

    if not ret:

        break



    annotator = Annotator(im0, line_width=2)



    results = model.predict(im0)

    boxes = results[0].boxes.xyxy.cpu()

    clss = results[0].boxes.cls.cpu().tolist()



    for box, cls in zip(boxes, clss):

        x1, y1 = int((box[0] + box[2]) // 2), int((box[1] + box[3]) // 2)

        annotator.text_label(box, label=model.names[int(cls)], color=colors(int(cls), True))



    writer.write(im0)

    cv2.imshow("Ultralytics text annotation", im0)



    if cv2.waitKey(1) & 0xFF == ord("q"):

        break



writer.release()

cap.release()

cv2.destroyAllWindows()

```

See the [`Annotator` Reference Page](../reference/utils/plotting.md#ultralytics.utils.plotting.Annotator) for additional insight.

## Miscellaneous

### Code Profiling

Check duration for code to run/process either using `with` or as a decorator.

```python

from ultralytics.utils.ops import Profile



with Profile(device="cuda:0") as dt:

    pass  # operation to measure



print(dt)

# >>> "Elapsed time is 9.5367431640625e-07 s"

```

### Ultralytics Supported Formats

Want or need to use the formats of [images or videos types supported](../modes/predict.md#image-and-video-formats) by Ultralytics programmatically? Use these constants if you need.

```python

from ultralytics.data.utils import IMG_FORMATS, VID_FORMATS



print(IMG_FORMATS)

# {'tiff', 'pfm', 'bmp', 'mpo', 'dng', 'jpeg', 'png', 'webp', 'tif', 'jpg'}



print(VID_FORMATS)

# {'avi', 'mpg', 'wmv', 'mpeg', 'm4v', 'mov', 'mp4', 'asf', 'mkv', 'ts', 'gif', 'webm'}

```

### Make Divisible

Calculates the nearest whole number to `x` to make evenly divisible when divided by `y`.

```python

from ultralytics.utils.ops import make_divisible



make_divisible(7, 3)

# >>> 9

make_divisible(7, 2)

# >>> 8

```

## FAQ

### What utilities are included in the Ultralytics package to enhance machine learning workflows?

The Ultralytics package includes a variety of utilities designed to streamline and optimize machine learning workflows. Key utilities include [auto-annotation](../reference/data/annotator.md#ultralytics.data.annotator.auto_annotate) for labeling datasets, converting COCO to YOLO format with [convert_coco](../reference/data/converter.md#ultralytics.data.converter.convert_coco), compressing images, and dataset auto-splitting. These tools aim to reduce manual effort, ensure consistency, and enhance data processing efficiency.

### How can I use Ultralytics to auto-label my dataset?

If you have a pre-trained Ultralytics YOLO object detection model, you can use it with the [SAM](../models/sam.md) model to auto-annotate your dataset in segmentation format. Here's an example:

```python

from ultralytics.data.annotator import auto_annotate



auto_annotate(

    data="path/to/new/data",

    det_model="yolov8n.pt",

    sam_model="mobile_sam.pt",

    device="cuda",

    output_dir="path/to/save_labels",

)

```

For more details, check the [auto_annotate reference section](../reference/data/annotator.md#ultralytics.data.annotator.auto_annotate).

### How do I convert COCO dataset annotations to YOLO format in Ultralytics?

To convert COCO JSON annotations into YOLO format for object detection, you can use the `convert_coco` utility. Here's a sample code snippet:

```python

from ultralytics.data.converter import convert_coco



convert_coco(

    "../datasets/coco/annotations/",

    use_segments=False,

    use_keypoints=False,

    cls91to80=True,

)

```

For additional information, visit the [convert_coco reference page](../reference/data/converter.md#ultralytics.data.converter.convert_coco).

### What is the purpose of the YOLO Data Explorer in the Ultralytics package?

The [YOLO Explorer](../datasets/explorer/index.md) is a powerful tool introduced in the `8.1.0` update to enhance dataset understanding. It allows you to use text queries to find object instances in your dataset, making it easier to analyze and manage your data. This tool provides valuable insights into dataset composition and distribution, helping to improve model training and performance.

### How can I convert bounding boxes to segments in Ultralytics?

To convert existing bounding box data (in `x y w h` format) to segments, you can use the `yolo_bbox2segment` function. Ensure your files are organized with separate directories for images and labels.

```python

from ultralytics.data.converter import yolo_bbox2segment



yolo_bbox2segment(

    im_dir="path/to/images",

    save_dir=None,  # saved to "labels-segment" in the images directory

    sam_model="sam_b.pt",

)

```

For more information, visit the [yolo_bbox2segment reference page](../reference/data/converter.md#ultralytics.data.converter.yolo_bbox2segment).