Spaces:
Running
Running
File size: 15,217 Bytes
4766c77 28ce5bd 4766c77 28ce5bd 4766c77 28ce5bd 4766c77 28ce5bd 4766c77 28ce5bd 4766c77 28ce5bd 4766c77 28ce5bd 7291007 28ce5bd 4766c77 28ce5bd 4766c77 28ce5bd 7291007 4766c77 7291007 28ce5bd 4766c77 28ce5bd 4766c77 28ce5bd 7291007 28ce5bd 7291007 28ce5bd 7291007 28ce5bd 7291007 28ce5bd 4766c77 28ce5bd 4766c77 28ce5bd 4766c77 28ce5bd e678988 28ce5bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 |
# Gradio YOLOv8 Det v0.2
# 创建人:曾逸夫
# 创建时间:2023-01-20
import argparse
import csv
import os
import sys
from ultralytics import YOLO
csv.field_size_limit(sys.maxsize)
import gc
import json
import random
import shutil
from collections import Counter
from pathlib import Path
import cv2
import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import plotly.express as px
from matplotlib import font_manager
ROOT_PATH = sys.path[0] # 项目根目录
# --------------------- 字体库 ---------------------
SimSun_path = f"{ROOT_PATH}/fonts/SimSun.ttf" # 宋体文件路径
TimesNesRoman_path = f"{ROOT_PATH}/fonts/TimesNewRoman.ttf" # 新罗马字体文件路径
# 宋体
SimSun = font_manager.FontProperties(fname=SimSun_path, size=12)
# 新罗马字体
TimesNesRoman = font_manager.FontProperties(fname=TimesNesRoman_path, size=12)
import torch
import yaml
from PIL import Image, ImageDraw, ImageFont
from util.fonts_opt import is_fonts
ROOT_PATH = sys.path[0] # 根目录
# Gradio YOLOv8 Det版本
GYD_VERSION = "Gradio YOLOv8 Det v0.2"
# 文件后缀
suffix_list = [".csv", ".yaml"]
# 字体大小
FONTSIZE = 25
# 目标尺寸
obj_style = ["小目标", "中目标", "大目标"]
def parse_args(known=False):
parser = argparse.ArgumentParser(description="Gradio YOLOv8 Det v0.2")
parser.add_argument("--model_type", "-mt", default="online", type=str, help="model type")
parser.add_argument("--source", "-src", default="upload", type=str, help="image input source")
parser.add_argument("--source_video", "-src_v", default="upload", type=str, help="video input source")
parser.add_argument("--img_tool", "-it", default="editor", type=str, help="input image tool")
parser.add_argument("--model_name", "-mn", default="yolov8s", type=str, help="model name")
parser.add_argument(
"--model_cfg",
"-mc",
default="./model_config/model_name_p5_all.yaml",
type=str,
help="model config",
)
parser.add_argument(
"--cls_name",
"-cls",
default="./cls_name/cls_name_zh.yaml",
type=str,
help="cls name",
)
parser.add_argument(
"--nms_conf",
"-conf",
default=0.5,
type=float,
help="model NMS confidence threshold",
)
parser.add_argument("--nms_iou", "-iou", default=0.45, type=float, help="model NMS IoU threshold")
parser.add_argument(
"--device",
"-dev",
default="cuda:0",
type=str,
help="cuda or cpu",
)
parser.add_argument("--inference_size", "-isz", default=640, type=int, help="model inference size")
parser.add_argument("--max_detnum", "-mdn", default=50, type=float, help="model max det num")
parser.add_argument("--slider_step", "-ss", default=0.05, type=float, help="slider step")
parser.add_argument(
"--is_login",
"-isl",
action="store_true",
default=False,
help="is login",
)
parser.add_argument('--usr_pwd',
"-up",
nargs='+',
type=str,
default=["admin", "admin"],
help="user & password for login")
parser.add_argument(
"--is_share",
"-is",
action="store_true",
default=False,
help="is login",
)
parser.add_argument("--server_port", "-sp", default=7861, type=int, help="server port")
args = parser.parse_known_args()[0] if known else parser.parse_args()
return args
# yaml文件解析
def yaml_parse(file_path):
return yaml.safe_load(open(file_path, encoding="utf-8").read())
# yaml csv 文件解析
def yaml_csv(file_path, file_tag):
file_suffix = Path(file_path).suffix
if file_suffix == suffix_list[0]:
# 模型名称
file_names = [i[0] for i in list(csv.reader(open(file_path)))] # csv版
elif file_suffix == suffix_list[1]:
# 模型名称
file_names = yaml_parse(file_path).get(file_tag) # yaml版
else:
print(f"{file_path}格式不正确!程序退出!")
sys.exit()
return file_names
# 检查网络连接
def check_online():
# 参考:https://github.com/ultralytics/yolov5/blob/master/utils/general.py
# Check internet connectivity
import socket
try:
socket.create_connection(("1.1.1.1", 443), 5) # check host accessibility
return True
except OSError:
return False
# 模型加载
def model_loading(img_path, conf, iou, infer_size, yolo_model="yolov8n.pt"):
model = YOLO(yolo_model)
results = model(source=img_path, imgsz=infer_size, conf=conf, iou=iou)
results = list(results)[0]
return results
# 标签和边界框颜色设置
def color_set(cls_num):
color_list = []
for i in range(cls_num):
color = tuple(np.random.choice(range(256), size=3))
# color = ["#"+''.join([random.choice('0123456789ABCDEF') for j in range(6)])]
color_list.append(color)
return color_list
# 随机生成浅色系或者深色系
def random_color(cls_num, is_light=True):
color_list = []
for i in range(cls_num):
color = (
random.randint(0, 127) + int(is_light) * 128,
random.randint(0, 127) + int(is_light) * 128,
random.randint(0, 127) + int(is_light) * 128,
)
color_list.append(color)
return color_list
# 检测绘制
def pil_draw(img, score_l, bbox_l, cls_l, cls_index_l, textFont, color_list):
img_pil = ImageDraw.Draw(img)
id = 0
for score, (xmin, ymin, xmax, ymax), label, cls_index in zip(score_l, bbox_l, cls_l, cls_index_l):
img_pil.rectangle([xmin, ymin, xmax, ymax], fill=None, outline=color_list[cls_index], width=2) # 边界框
countdown_msg = f"{id}-{label} {score:.2f}"
text_w, text_h = textFont.getsize(countdown_msg) # 标签尺寸
# 标签背景
img_pil.rectangle(
(xmin, ymin, xmin + text_w, ymin + text_h),
fill=color_list[cls_index],
outline=color_list[cls_index],
)
# 标签
img_pil.multiline_text(
(xmin, ymin),
countdown_msg,
fill=(0, 0, 0),
font=textFont,
align="center",
)
id += 1
return img
# 绘制多边形
def polygon_drawing(img_mask, canvas, color_seg):
# ------- RGB转BGR -------
color_seg = list(color_seg)
color_seg[0], color_seg[2] = color_seg[2], color_seg[0]
color_seg = tuple(color_seg)
# 定义多边形的顶点
pts = np.array(img_mask, dtype=np.int32)
# 多边形绘制
cv2.drawContours(canvas, [pts], -1, color_seg, thickness=-1)
# 输出分割结果
def seg_output(img_path, seg_mask_list, color_list, cls_list):
img = cv2.imread(img_path)
w, h = img.shape[1], img.shape[0]
img = cv2.cvtColor(img, cv2.COLOR_BGR2BGRA)
w, h = img.shape[1], img.shape[0]
canvas = np.zeros((h, w, 3), dtype=np.uint8)
canvas = cv2.cvtColor(canvas, cv2.COLOR_BGR2BGRA)
# 获取分割坐标
for seg_mask, cls_index in zip(seg_mask_list, cls_list):
img_mask = []
for i in range(len(seg_mask)):
img_mask.append([seg_mask[i][0] * w, seg_mask[i][1] * h])
polygon_drawing(img_mask, canvas, color_list[int(cls_index)]) # 绘制分割图形
img_mask_merge = cv2.add(img, canvas) # 合并图像
return img_mask_merge
# YOLOv5图片检测函数
def yolo_det_img(img_path, model_name, infer_size, conf, iou):
global model, model_name_tmp, device_tmp
s_obj, m_obj, l_obj = 0, 0, 0
area_obj_all = [] # 目标面积
score_det_stat = [] # 置信度统计
bbox_det_stat = [] # 边界框统计
cls_det_stat = [] # 类别数量统计
cls_index_det_stat = [] # 类别索引统计
# 模型加载
predict_results = model_loading(img_path, conf, iou, infer_size, yolo_model=f"{model_name}.pt")
# 检测参数
xyxy_list = predict_results.boxes.xyxy.cpu().numpy().tolist()
conf_list = predict_results.boxes.conf.cpu().numpy().tolist()
cls_list = predict_results.boxes.cls.cpu().numpy().tolist()
# 颜色列表
color_list = random_color(len(model_cls_name_cp), True)
# 图像分割
if (model_name[-3:] == "seg"):
masks_list = predict_results.masks.segments
img_mask_merge = seg_output(img_path, masks_list, color_list, cls_list)
img = Image.fromarray(cv2.cvtColor(img_mask_merge, cv2.COLOR_BGRA2RGBA))
else:
img = Image.open(img_path)
# 判断检测对象是否为空
if (xyxy_list != []):
# ---------------- 加载字体 ----------------
yaml_index = cls_name.index(".yaml")
cls_name_lang = cls_name[yaml_index - 2:yaml_index]
if cls_name_lang == "zh":
# 中文
textFont = ImageFont.truetype(str(f"{ROOT_PATH}/fonts/SimSun.ttf"), size=FONTSIZE)
elif cls_name_lang in ["en", "ru", "es", "ar"]:
# 英文、俄语、西班牙语、阿拉伯语
textFont = ImageFont.truetype(str(f"{ROOT_PATH}/fonts/TimesNewRoman.ttf"), size=FONTSIZE)
elif cls_name_lang == "ko":
# 韩语
textFont = ImageFont.truetype(str(f"{ROOT_PATH}/fonts/malgun.ttf"), size=FONTSIZE)
for i in range(len(xyxy_list)):
obj_cls_index = int(cls_list[i]) # 类别索引
cls_index_det_stat.append(obj_cls_index)
obj_cls = model_cls_name_cp[obj_cls_index] # 类别
cls_det_stat.append(obj_cls)
# ------------ 边框坐标 ------------
x0 = int(xyxy_list[i][0])
y0 = int(xyxy_list[i][1])
x1 = int(xyxy_list[i][2])
y1 = int(xyxy_list[i][3])
bbox_det_stat.append((x0, y0, x1, y1))
conf = float(conf_list[i]) # 置信度
score_det_stat.append(conf)
# ---------- 加入目标尺寸 ----------
w_obj = x1 - x0
h_obj = y1 - y0
area_obj = w_obj * h_obj
area_obj_all.append(area_obj)
det_img = pil_draw(img, score_det_stat, bbox_det_stat, cls_det_stat, cls_index_det_stat, textFont, color_list)
# -------------- 目标尺寸计算 --------------
for i in range(len(area_obj_all)):
if (0 < area_obj_all[i] <= 32 ** 2):
s_obj = s_obj + 1
elif (32 ** 2 < area_obj_all[i] <= 96 ** 2):
m_obj = m_obj + 1
elif (area_obj_all[i] > 96 ** 2):
l_obj = l_obj + 1
sml_obj_total = s_obj + m_obj + l_obj
objSize_dict = {}
objSize_dict = {obj_style[i]: [s_obj, m_obj, l_obj][i] / sml_obj_total for i in range(3)}
# ------------ 类别统计 ------------
clsRatio_dict = {}
clsDet_dict = Counter(cls_det_stat)
clsDet_dict_sum = sum(clsDet_dict.values())
for k, v in clsDet_dict.items():
clsRatio_dict[k] = v / clsDet_dict_sum
return det_img, objSize_dict, clsRatio_dict
else:
print("图片目标不存在!")
return None, None, None
def main(args):
gr.close_all()
global model_cls_name_cp, cls_name
source = args.source
img_tool = args.img_tool
nms_conf = args.nms_conf
nms_iou = args.nms_iou
model_name = args.model_name
model_cfg = args.model_cfg
cls_name = args.cls_name
inference_size = args.inference_size
slider_step = args.slider_step
is_share = args.is_share
is_fonts(f"{ROOT_PATH}/fonts") # 检查字体文件
model_names = yaml_csv(model_cfg, "model_names") # 模型名称
model_cls_name = yaml_csv(cls_name, "model_cls_name") # 类别名称
model_cls_name_cp = model_cls_name.copy() # 类别名称
# ------------------- 图片模式输入组件 -------------------
inputs_img = gr.Image(image_mode="RGB", source=source, tool=img_tool, type="filepath", label="原始图片")
inputs_model01 = gr.Dropdown(choices=model_names, value=model_name, type="value", label="模型")
inputs_size01 = gr.Slider(384, 1536, step=128, value=inference_size, label="推理尺寸")
input_conf01 = gr.Slider(0, 1, step=slider_step, value=nms_conf, label="置信度阈值")
inputs_iou01 = gr.Slider(0, 1, step=slider_step, value=nms_iou, label="IoU 阈值")
# ------------------- 图片模式输入参数 -------------------
inputs_img_list = [
inputs_img, # 输入图片
inputs_model01, # 模型
inputs_size01, # 推理尺寸
input_conf01, # 置信度阈值
inputs_iou01, # IoU阈值
]
# ------------------- 图片模式输出组件 -------------------
outputs_img = gr.Image(type="pil", label="检测图片")
outputs_objSize = gr.Label(label="目标尺寸占比统计")
outputs_clsSize = gr.Label(label="类别检测占比统计")
# ------------------- 图片模式输出参数 -------------------
outputs_img_list = [outputs_img, outputs_objSize, outputs_clsSize]
# 标题
title = "Gradio YOLOv8 Det"
# 描述
description = "<div align='center'>Object detection and image segmentation system based on YOLOv8</div><div align='center'>Author: 曾逸夫(Zeng Yifu), Github: https://github.com/Zengyf-CVer, thanks to [Gradio](https://github.com/gradio-app/gradio) & [YOLOv8](https://github.com/ultralytics/ultralytics)</div>"
# 示例图片
examples_imgs = [
[
"./img_examples/bus.jpg",
"yolov8s",
640,
0.6,
0.5,],
[
"./img_examples/giraffe.jpg",
"yolov8l",
320,
0.5,
0.45,],
[
"./img_examples/zidane.jpg",
"yolov8m",
640,
0.6,
0.5,],
[
"./img_examples/Millenial-at-work.jpg",
"yolov8x",
1280,
0.5,
0.5,],
[
"./img_examples/bus.jpg",
"yolov8s-seg",
640,
0.6,
0.5,],
[
"./img_examples/Millenial-at-work.jpg",
"yolov8x-seg",
1280,
0.5,
0.5,],]
# 接口
gyd_img = gr.Interface(
fn=yolo_det_img,
inputs=inputs_img_list,
outputs=outputs_img_list,
title=title,
description=description,
examples=examples_imgs,
cache_examples=False,
flagging_dir="run", # 输出目录
allow_flagging="manual",
flagging_options=["good", "generally", "bad"],
)
gyd_img.launch(
inbrowser=True, # 自动打开默认浏览器
show_tips=True, # 自动显示gradio最新功能
share=is_share, # 项目共享,其他设备可以访问
favicon_path="./icon/logo.ico", # 网页图标
show_error=True, # 在浏览器控制台中显示错误信息
quiet=True, # 禁止大多数打印语句
)
if __name__ == "__main__":
args = parse_args()
main(args)
|