Zengyf-CVer commited on
Commit
b2eff28
·
1 Parent(s): 6117c49

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +138 -140
app.py CHANGED
@@ -1,31 +1,21 @@
1
- # Gradio YOLOv8 Det v0.2.5
2
  # 创建人:曾逸夫
3
- # 创建时间:2023-10-21
 
4
 
5
  import argparse
6
  import csv
7
- import gc
8
- import json
9
- import os
10
  import random
11
- import shutil
12
  import sys
13
  from collections import Counter
14
  from pathlib import Path
15
 
16
  import cv2
17
  import gradio as gr
18
- import matplotlib.pyplot as plt
19
  import numpy as np
20
- import pandas as pd
21
- import plotly.express as px
22
  from matplotlib import font_manager
23
  from ultralytics import YOLO
24
 
25
- # pip_source = "https://pypi.tuna.tsinghua.edu.cn/simple some-package"
26
- # os.system(f"pip install gradio --upgrade -i {pip_source}")
27
- # os.system(f"pip install ultralytics --upgrade -i {pip_source}")
28
-
29
  ROOT_PATH = sys.path[0] # 项目根目录
30
 
31
  # --------------------- 字体库 ---------------------
@@ -36,7 +26,6 @@ SimSun = font_manager.FontProperties(fname=SimSun_path, size=12)
36
  # 新罗马字体
37
  TimesNesRoman = font_manager.FontProperties(fname=TimesNesRoman_path, size=12)
38
 
39
- import torch
40
  import yaml
41
  from PIL import Image, ImageDraw, ImageFont
42
 
@@ -45,7 +34,7 @@ from util.fonts_opt import is_fonts
45
  ROOT_PATH = sys.path[0] # 根目录
46
 
47
  # Gradio YOLOv8 Det版本
48
- GYD_VERSION = "Gradio YOLOv8 Det v0.2.5"
49
 
50
  # 文件后缀
51
  suffix_list = [".csv", ".yaml"]
@@ -58,11 +47,9 @@ obj_style = ["小目标", "中目标", "大目标"]
58
 
59
 
60
  def parse_args(known=False):
61
- parser = argparse.ArgumentParser(description="Gradio YOLOv8 Det v0.2.5")
62
  parser.add_argument("--model_type", "-mt", default="online", type=str, help="model type")
63
  parser.add_argument("--source", "-src", default="upload", type=str, help="image input source")
64
- parser.add_argument("--source_video", "-src_v", default="upload", type=str, help="video input source")
65
- parser.add_argument("--img_tool", "-it", default="editor", type=str, help="input image tool")
66
  parser.add_argument("--model_name", "-mn", default="yolov8s", type=str, help="model name")
67
  parser.add_argument(
68
  "--model_cfg",
@@ -86,13 +73,6 @@ def parse_args(known=False):
86
  help="model NMS confidence threshold",
87
  )
88
  parser.add_argument("--nms_iou", "-iou", default=0.45, type=float, help="model NMS IoU threshold")
89
- parser.add_argument(
90
- "--device",
91
- "-dev",
92
- default="cuda:0",
93
- type=str,
94
- help="cuda or cpu",
95
- )
96
  parser.add_argument("--inference_size", "-isz", default=640, type=int, help="model inference size")
97
  parser.add_argument("--max_detnum", "-mdn", default=50, type=float, help="model max det num")
98
  parser.add_argument("--slider_step", "-ss", default=0.05, type=float, help="slider step")
@@ -155,21 +135,11 @@ def check_online():
155
  return False
156
 
157
 
158
- # 模型加载
159
- def model_loading(img_path, conf, iou, infer_size, yolo_model="yolov8n.pt"):
160
- model = YOLO(yolo_model)
161
-
162
- results = model(source=img_path, imgsz=infer_size, conf=conf, iou=iou)
163
- results = list(results)[0]
164
- return results
165
-
166
-
167
  # 标签和边界框颜色设置
168
  def color_set(cls_num):
169
  color_list = []
170
  for i in range(cls_num):
171
  color = tuple(np.random.choice(range(256), size=3))
172
- # color = ["#"+''.join([random.choice('0123456789ABCDEF') for j in range(6)])]
173
  color_list.append(color)
174
 
175
  return color_list
@@ -195,6 +165,7 @@ def pil_draw(img, score_l, bbox_l, cls_l, cls_index_l, textFont, color_list):
195
  id = 0
196
 
197
  for score, (xmin, ymin, xmax, ymax), label, cls_index in zip(score_l, bbox_l, cls_l, cls_index_l):
 
198
  img_pil.rectangle([xmin, ymin, xmax, ymax], fill=None, outline=color_list[cls_index], width=2) # 边界框
199
  countdown_msg = f"{id}-{label} {score:.2f}"
200
  # text_w, text_h = textFont.getsize(countdown_msg) # 标签尺寸 pillow 9.5.0
@@ -257,8 +228,17 @@ def seg_output(img_path, seg_mask_list, color_list, cls_list):
257
  return img_mask_merge
258
 
259
 
 
 
 
 
 
 
 
 
 
260
  # YOLOv8图片检测函数
261
- def yolo_det_img(img_path, model_name, infer_size, conf, iou):
262
 
263
  global model, model_name_tmp, device_tmp
264
 
@@ -269,10 +249,10 @@ def yolo_det_img(img_path, model_name, infer_size, conf, iou):
269
  score_det_stat = [] # 置信度统计
270
  bbox_det_stat = [] # 边界框统计
271
  cls_det_stat = [] # 类别数量统计
272
- cls_index_det_stat = [] # 类别索引统计
273
 
274
  # 模型加载
275
- predict_results = model_loading(img_path, conf, iou, infer_size, yolo_model=f"{model_name}.pt")
276
  # 检测参数
277
  xyxy_list = predict_results.boxes.xyxy.cpu().numpy().tolist()
278
  conf_list = predict_results.boxes.conf.cpu().numpy().tolist()
@@ -308,11 +288,6 @@ def yolo_det_img(img_path, model_name, infer_size, conf, iou):
308
  textFont = ImageFont.truetype(str(f"{ROOT_PATH}/fonts/malgun.ttf"), size=FONTSIZE)
309
 
310
  for i in range(len(xyxy_list)):
311
- obj_cls_index = int(cls_list[i]) # 类别索引
312
- cls_index_det_stat.append(obj_cls_index)
313
-
314
- obj_cls = model_cls_name_cp[obj_cls_index] # 类别
315
- cls_det_stat.append(obj_cls)
316
 
317
  # ------------ 边框坐标 ------------
318
  x0 = int(xyxy_list[i][0])
@@ -320,16 +295,63 @@ def yolo_det_img(img_path, model_name, infer_size, conf, iou):
320
  x1 = int(xyxy_list[i][2])
321
  y1 = int(xyxy_list[i][3])
322
 
323
- bbox_det_stat.append((x0, y0, x1, y1))
324
-
325
- conf = float(conf_list[i]) # 置信度
326
- score_det_stat.append(conf)
327
-
328
  # ---------- 加入目标尺寸 ----------
329
  w_obj = x1 - x0
330
  h_obj = y1 - y0
331
- area_obj = w_obj * h_obj
332
- area_obj_all.append(area_obj)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
333
 
334
  det_img = pil_draw(img, score_det_stat, bbox_det_stat, cls_det_stat, cls_index_det_stat, textFont, color_list)
335
 
@@ -353,10 +375,10 @@ def yolo_det_img(img_path, model_name, infer_size, conf, iou):
353
  for k, v in clsDet_dict.items():
354
  clsRatio_dict[k] = v / clsDet_dict_sum
355
 
 
356
  return det_img, objSize_dict, clsRatio_dict
357
  else:
358
- print("图片目标不存在!")
359
- return None, None, None
360
 
361
 
362
  def main(args):
@@ -365,13 +387,13 @@ def main(args):
365
  global model_cls_name_cp, cls_name
366
 
367
  source = args.source
368
- img_tool = args.img_tool
369
  nms_conf = args.nms_conf
370
  nms_iou = args.nms_iou
371
  model_name = args.model_name
372
  model_cfg = args.model_cfg
373
  cls_name = args.cls_name
374
  inference_size = args.inference_size
 
375
  slider_step = args.slider_step
376
 
377
  is_fonts(f"{ROOT_PATH}/fonts") # 检查字体文件
@@ -381,100 +403,76 @@ def main(args):
381
 
382
  model_cls_name_cp = model_cls_name.copy() # 类别名称
383
 
384
- # ------------------- 图片模式输入组件 -------------------
385
- inputs_img = gr.Image(image_mode="RGB", source=source, tool=img_tool, type="filepath", label="原始图片")
386
- inputs_model01 = gr.Dropdown(choices=model_names, value=model_name, type="value", label="模型")
387
- inputs_size01 = gr.Slider(384, 1536, step=128, value=inference_size, label="推理尺寸")
388
- input_conf01 = gr.Slider(0, 1, step=slider_step, value=nms_conf, label="置信度阈值")
389
- inputs_iou01 = gr.Slider(0, 1, step=slider_step, value=nms_iou, label="IoU 阈值")
390
-
391
- # ------------------- 图片模式输入参数 -------------------
392
- inputs_img_list = [
393
- inputs_img, # 输入图片
394
- inputs_model01, # 模型
395
- inputs_size01, # 推理尺寸
396
- input_conf01, # 置信度阈值
397
- inputs_iou01, # IoU阈值
398
- ]
399
-
400
- # ------------------- 图片模式输出组件 -------------------
401
- outputs_img = gr.Image(type="pil", label="检测图片")
402
- outputs_objSize = gr.Label(label="目标尺寸占比统计")
403
- outputs_clsSize = gr.Label(label="类别检测占比统计")
404
-
405
- # ------------------- 图片模式输出参数 -------------------
406
- outputs_img_list = [outputs_img, outputs_objSize, outputs_clsSize]
407
-
408
- # 标题
409
- title = "Gradio YOLOv8 Det"
410
-
411
- # 描述
412
- description = "<div align='center'>基于YOLOv8的目标检测与图像分割系统</div>"
413
-
414
- # 示例图片
415
- examples_imgs = [
416
- [
417
- "./img_examples/bus.jpg",
418
- "yolov8s",
419
- 640,
420
- 0.6,
421
- 0.5,],
422
- [
423
- "./img_examples/giraffe.jpg",
424
- "yolov8l",
425
- 320,
426
- 0.5,
427
- 0.45,],
428
- [
429
- "./img_examples/zidane.jpg",
430
- "yolov8m",
431
- 640,
432
- 0.6,
433
- 0.5,],
434
- [
435
- "./img_examples/Millenial-at-work.jpg",
436
- "yolov8x",
437
- 1280,
438
- 0.5,
439
- 0.5,],
440
- [
441
- "./img_examples/bus.jpg",
442
- "yolov8s-seg",
443
- 640,
444
- 0.6,
445
- 0.5,],
446
- [
447
- "./img_examples/Millenial-at-work.jpg",
448
- "yolov8x-seg",
449
- 1280,
450
- 0.5,
451
- 0.5,],]
452
-
453
- # 接口
454
- gyd_img = gr.Interface(
455
- fn=yolo_det_img,
456
- inputs=inputs_img_list,
457
- outputs=outputs_img_list,
458
- title=title,
459
- description=description,
460
- examples=examples_imgs,
461
- cache_examples=False,
462
- flagging_dir="run", # 输出目录
463
- allow_flagging="manual",
464
- flagging_options=["good", "generally", "bad"],
465
- )
466
-
467
- return gyd_img
468
 
469
 
470
  if __name__ == "__main__":
471
  args = parse_args()
472
- gyd_img = main(args)
473
  is_share = args.is_share
474
 
475
- gyd_img.launch(
476
  inbrowser=True, # 自动打开默认浏览器
477
- show_tips=True, # 自动显示gradio最新功能
478
  share=is_share, # 项目共享,其他设备可以访问
479
  favicon_path="./icon/logo.ico", # 网页图标
480
  show_error=True, # 在浏览器控制台中显示错误信息
 
1
+ # Gradio YOLOv8 Det v1.0.0
2
  # 创建人:曾逸夫
3
+ # 创建时间:2023-10-28
4
+ # pip install gradio>=4.0.2
5
 
6
  import argparse
7
  import csv
 
 
 
8
  import random
 
9
  import sys
10
  from collections import Counter
11
  from pathlib import Path
12
 
13
  import cv2
14
  import gradio as gr
 
15
  import numpy as np
 
 
16
  from matplotlib import font_manager
17
  from ultralytics import YOLO
18
 
 
 
 
 
19
  ROOT_PATH = sys.path[0] # 项目根目录
20
 
21
  # --------------------- 字体库 ---------------------
 
26
  # 新罗马字体
27
  TimesNesRoman = font_manager.FontProperties(fname=TimesNesRoman_path, size=12)
28
 
 
29
  import yaml
30
  from PIL import Image, ImageDraw, ImageFont
31
 
 
34
  ROOT_PATH = sys.path[0] # 根目录
35
 
36
  # Gradio YOLOv8 Det版本
37
+ GYD_VERSION = "Gradio YOLOv8 Det v1.0.0"
38
 
39
  # 文件后缀
40
  suffix_list = [".csv", ".yaml"]
 
47
 
48
 
49
  def parse_args(known=False):
50
+ parser = argparse.ArgumentParser(description="Gradio YOLOv8 Det v1.0.0")
51
  parser.add_argument("--model_type", "-mt", default="online", type=str, help="model type")
52
  parser.add_argument("--source", "-src", default="upload", type=str, help="image input source")
 
 
53
  parser.add_argument("--model_name", "-mn", default="yolov8s", type=str, help="model name")
54
  parser.add_argument(
55
  "--model_cfg",
 
73
  help="model NMS confidence threshold",
74
  )
75
  parser.add_argument("--nms_iou", "-iou", default=0.45, type=float, help="model NMS IoU threshold")
 
 
 
 
 
 
 
76
  parser.add_argument("--inference_size", "-isz", default=640, type=int, help="model inference size")
77
  parser.add_argument("--max_detnum", "-mdn", default=50, type=float, help="model max det num")
78
  parser.add_argument("--slider_step", "-ss", default=0.05, type=float, help="slider step")
 
135
  return False
136
 
137
 
 
 
 
 
 
 
 
 
 
138
  # 标签和边界框颜色设置
139
  def color_set(cls_num):
140
  color_list = []
141
  for i in range(cls_num):
142
  color = tuple(np.random.choice(range(256), size=3))
 
143
  color_list.append(color)
144
 
145
  return color_list
 
165
  id = 0
166
 
167
  for score, (xmin, ymin, xmax, ymax), label, cls_index in zip(score_l, bbox_l, cls_l, cls_index_l):
168
+
169
  img_pil.rectangle([xmin, ymin, xmax, ymax], fill=None, outline=color_list[cls_index], width=2) # 边界框
170
  countdown_msg = f"{id}-{label} {score:.2f}"
171
  # text_w, text_h = textFont.getsize(countdown_msg) # 标签尺寸 pillow 9.5.0
 
228
  return img_mask_merge
229
 
230
 
231
+ # 模型加载
232
+ def model_loading(img_path, device_opt, conf, iou, infer_size, max_det, yolo_model="yolov8n.pt"):
233
+ model = YOLO(yolo_model)
234
+
235
+ results = model(source=img_path, device=device_opt, imgsz=infer_size, conf=conf, iou=iou, max_det=max_det)
236
+ results = list(results)[0]
237
+ return results
238
+
239
+
240
  # YOLOv8图片检测函数
241
+ def yolo_det_img(img_path, model_name, device_opt, infer_size, conf, iou, max_det, obj_size):
242
 
243
  global model, model_name_tmp, device_tmp
244
 
 
249
  score_det_stat = [] # 置信度统计
250
  bbox_det_stat = [] # 边界框统计
251
  cls_det_stat = [] # 类别数量统计
252
+ cls_index_det_stat = [] # 1
253
 
254
  # 模型加载
255
+ predict_results = model_loading(img_path, device_opt, conf, iou, infer_size, max_det, yolo_model=f"{model_name}.pt")
256
  # 检测参数
257
  xyxy_list = predict_results.boxes.xyxy.cpu().numpy().tolist()
258
  conf_list = predict_results.boxes.conf.cpu().numpy().tolist()
 
288
  textFont = ImageFont.truetype(str(f"{ROOT_PATH}/fonts/malgun.ttf"), size=FONTSIZE)
289
 
290
  for i in range(len(xyxy_list)):
 
 
 
 
 
291
 
292
  # ------------ 边框坐标 ------------
293
  x0 = int(xyxy_list[i][0])
 
295
  x1 = int(xyxy_list[i][2])
296
  y1 = int(xyxy_list[i][3])
297
 
 
 
 
 
 
298
  # ---------- 加入目标尺寸 ----------
299
  w_obj = x1 - x0
300
  h_obj = y1 - y0
301
+ area_obj = w_obj * h_obj # 目标尺寸
302
+
303
+ if (obj_size == "小目标" and area_obj > 0 and area_obj <= 32 ** 2):
304
+ obj_cls_index = int(cls_list[i]) # 类别索引
305
+ cls_index_det_stat.append(obj_cls_index)
306
+
307
+ obj_cls = model_cls_name_cp[obj_cls_index] # 类别
308
+ cls_det_stat.append(obj_cls)
309
+
310
+ bbox_det_stat.append((x0, y0, x1, y1))
311
+
312
+ conf = float(conf_list[i]) # 置信度
313
+ score_det_stat.append(conf)
314
+
315
+ area_obj_all.append(area_obj)
316
+ elif (obj_size == "中目标" and area_obj > 32 ** 2 and area_obj <= 96 ** 2):
317
+ obj_cls_index = int(cls_list[i]) # 类别索引
318
+ cls_index_det_stat.append(obj_cls_index)
319
+
320
+ obj_cls = model_cls_name_cp[obj_cls_index] # 类别
321
+ cls_det_stat.append(obj_cls)
322
+
323
+ bbox_det_stat.append((x0, y0, x1, y1))
324
+
325
+ conf = float(conf_list[i]) # 置信度
326
+ score_det_stat.append(conf)
327
+
328
+ area_obj_all.append(area_obj)
329
+ elif (obj_size == "大目标" and area_obj > 96 ** 2):
330
+ obj_cls_index = int(cls_list[i]) # 类别索引
331
+ cls_index_det_stat.append(obj_cls_index)
332
+
333
+ obj_cls = model_cls_name_cp[obj_cls_index] # 类别
334
+ cls_det_stat.append(obj_cls)
335
+
336
+ bbox_det_stat.append((x0, y0, x1, y1))
337
+
338
+ conf = float(conf_list[i]) # 置信度
339
+ score_det_stat.append(conf)
340
+
341
+ area_obj_all.append(area_obj)
342
+ elif (obj_size == "所有尺寸"):
343
+ obj_cls_index = int(cls_list[i]) # 类别索引
344
+ cls_index_det_stat.append(obj_cls_index)
345
+
346
+ obj_cls = model_cls_name_cp[obj_cls_index] # 类别
347
+ cls_det_stat.append(obj_cls)
348
+
349
+ bbox_det_stat.append((x0, y0, x1, y1))
350
+
351
+ conf = float(conf_list[i]) # 置信度
352
+ score_det_stat.append(conf)
353
+
354
+ area_obj_all.append(area_obj)
355
 
356
  det_img = pil_draw(img, score_det_stat, bbox_det_stat, cls_det_stat, cls_index_det_stat, textFont, color_list)
357
 
 
375
  for k, v in clsDet_dict.items():
376
  clsRatio_dict[k] = v / clsDet_dict_sum
377
 
378
+ gr.Info("图片检测成功!")
379
  return det_img, objSize_dict, clsRatio_dict
380
  else:
381
+ raise gr.Error("图片检测失败!")
 
382
 
383
 
384
  def main(args):
 
387
  global model_cls_name_cp, cls_name
388
 
389
  source = args.source
 
390
  nms_conf = args.nms_conf
391
  nms_iou = args.nms_iou
392
  model_name = args.model_name
393
  model_cfg = args.model_cfg
394
  cls_name = args.cls_name
395
  inference_size = args.inference_size
396
+ max_detnum = args.max_detnum
397
  slider_step = args.slider_step
398
 
399
  is_fonts(f"{ROOT_PATH}/fonts") # 检查字体文件
 
403
 
404
  model_cls_name_cp = model_cls_name.copy() # 类别名称
405
 
406
+ # ------------ Gradio Blocks ------------
407
+ with gr.Blocks() as gyd:
408
+ with gr.Row():
409
+ # gr.HTML(value="<div align='center' style='font-size:25px'>Gradio YOLOv8 Det<div> \
410
+ # <div align='center' style='font-size:20px'>基于 YOLOv8 的目标检测与图像分割系统<div>")
411
+ gr.Markdown(value="<p align='center'><a href='https://gitee.com/CV_Lab/gradio-yolov8-det'>\
412
+ <img src='https://pycver.gitee.io/ows-pics/imgs/gradio_yolov8_det_logo.png' alt='Simple Icons' ></a>\
413
+ <p align='center'>基于 Gradio 的 YOLOv8 通用目标检测与图像分割演示系统</p><p align='center'>可自定义检测模型、演示便捷、安装简单</p>"
414
+ )
415
+ with gr.Row():
416
+ gr.Markdown(value="作者:曾逸夫,Gitee:https://gitee.com/PyCVer ,Github:https://github.com/Zengyf-CVer")
417
+ with gr.Row():
418
+ with gr.Column(scale=1):
419
+ with gr.Row():
420
+ inputs_img = gr.Image(image_mode="RGB", sources=source, type="filepath", label="原始图片")
421
+
422
+ with gr.Row():
423
+ device_opt = gr.Radio(choices=["cpu", "0", "1", "2", "3"], value="cpu", label="设备")
424
+ with gr.Row():
425
+ inputs_model = gr.Dropdown(choices=model_names, value=model_name, type="value", label="模型")
426
+ with gr.Row():
427
+ inputs_size = gr.Slider(320, 1600, step=1, value=inference_size, label="推理尺寸")
428
+ max_det = gr.Slider(1, 1000, step=1, value=max_detnum, label="最大检测数")
429
+ with gr.Row():
430
+ input_conf = gr.Slider(0, 1, step=slider_step, value=nms_conf, label="置信度阈值")
431
+ inputs_iou = gr.Slider(0, 1, step=slider_step, value=nms_iou, label="IoU 阈值")
432
+ with gr.Row():
433
+ obj_size = gr.Radio(choices=["所有尺寸", "小目标", "中目标", "大目标"], value="所有尺寸", label="目标尺寸")
434
+ with gr.Row():
435
+ gr.ClearButton(inputs_img, value="清除")
436
+ det_btn_img = gr.Button(value='检测', variant="primary")
437
+
438
+ with gr.Column(scale=1):
439
+ with gr.Row():
440
+ outputs_img = gr.Image(type="pil", label="检测图片")
441
+ with gr.Row():
442
+ outputs_objSize = gr.Label(label="目标尺寸占比统计")
443
+ with gr.Row():
444
+ outputs_clsSize = gr.Label(label="类别检测占比统计")
445
+
446
+ with gr.Row():
447
+ example_list = [
448
+ ["./img_examples/bus.jpg", "yolov8s", "cpu", 640, 0.6, 0.5, 100, "所有尺寸"],
449
+ ["./img_examples/giraffe.jpg", "yolov8l", "cpu", 320, 0.5, 0.45, 100, "所有尺寸"],
450
+ ["./img_examples/zidane.jpg", "yolov8m", "cpu", 640, 0.6, 0.5, 100, "所有尺寸"],
451
+ ["./img_examples/Millenial-at-work.jpg", "yolov8x", "cpu", 1280, 0.5, 0.5, 100, "所有尺寸"],
452
+ ["./img_examples/bus.jpg", "yolov8s-seg", "cpu", 640, 0.6, 0.5, 100, "所有尺寸"],
453
+ ["./img_examples/Millenial-at-work.jpg", "yolov8x-seg", "cpu", 1280, 0.5, 0.5, 100, "所有尺寸"],]
454
+ gr.Examples(example_list,
455
+ [inputs_img, inputs_model, device_opt, inputs_size, input_conf, inputs_iou, max_det, obj_size],
456
+ [outputs_img, outputs_objSize, outputs_clsSize],
457
+ yolo_det_img,
458
+ cache_examples=False)
459
+
460
+ det_btn_img.click(fn=yolo_det_img,
461
+ inputs=[
462
+ inputs_img, inputs_model, device_opt, inputs_size, input_conf, inputs_iou, max_det,
463
+ obj_size],
464
+ outputs=[outputs_img, outputs_objSize, outputs_clsSize])
465
+
466
+ return gyd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
467
 
468
 
469
  if __name__ == "__main__":
470
  args = parse_args()
471
+ gyd = main(args)
472
  is_share = args.is_share
473
 
474
+ gyd.queue().launch(
475
  inbrowser=True, # 自动打开默认浏览器
 
476
  share=is_share, # 项目共享,其他设备可以访问
477
  favicon_path="./icon/logo.ico", # 网页图标
478
  show_error=True, # 在浏览器控制台中显示错误信息