Zengyf-CVer's picture
app update
6451b1b
raw
history blame
20.9 kB
# Gradio YOLOv5 Det v0.4
# author: Zeng Yifu(曾逸夫)
# creation time: 2022-05-28
# email: zyfiy1314@163.com
# project homepage: https://gitee.com/CV_Lab/gradio_yolov5_det
import argparse
import csv
import gc
import json
import os
import sys
from collections import Counter
from pathlib import Path
import cv2
import gradio as gr
import numpy as np
import pandas as pd
import torch
import yaml
from PIL import Image, ImageDraw, ImageFont
from util.fonts_opt import is_fonts
from util.pdf_opt import pdf_generate
ROOT_PATH = sys.path[0] # root directory
# model path
model_path = "ultralytics/yolov5"
# Gradio YOLOv5 Det version
GYD_VERSION = "Gradio YOLOv5 Det v0.4"
# model name temporary variable
model_name_tmp = ""
# Device temporary variables
device_tmp = ""
# File extension
suffix_list = [".csv", ".yaml"]
# font size
FONTSIZE = 25
# object style
obj_style = ["Small Object", "Medium Object", "Large Object"]
def parse_args(known=False):
parser = argparse.ArgumentParser(description="Gradio YOLOv5 Det v0.4")
parser.add_argument("--source", "-src", default="upload", type=str, help="input source")
parser.add_argument("--source_video", "-src_v", default="webcam", type=str, help="video input source")
parser.add_argument("--img_tool", "-it", default="editor", type=str, help="input image tool")
parser.add_argument("--model_name", "-mn", default="yolov5s", type=str, help="model name")
parser.add_argument(
"--model_cfg",
"-mc",
default="./model_config/model_name_p5_p6_all.yaml",
type=str,
help="model config",
)
parser.add_argument(
"--cls_name",
"-cls",
default="./cls_name/cls_name_en.yaml",
type=str,
help="cls name",
)
parser.add_argument(
"--nms_conf",
"-conf",
default=0.5,
type=float,
help="model NMS confidence threshold",
)
parser.add_argument("--nms_iou", "-iou", default=0.45, type=float, help="model NMS IoU threshold")
parser.add_argument(
"--device",
"-dev",
default="cpu",
type=str,
help="cuda or cpu",
)
parser.add_argument("--inference_size", "-isz", default=640, type=int, help="model inference size")
parser.add_argument("--max_detnum", "-mdn", default=50, type=float, help="model max det num")
parser.add_argument("--slider_step", "-ss", default=0.05, type=float, help="slider step")
parser.add_argument(
"--is_login",
"-isl",
action="store_true",
default=False,
help="is login",
)
parser.add_argument('--usr_pwd',
"-up",
nargs='+',
type=str,
default=["admin", "admin"],
help="user & password for login")
parser.add_argument(
"--is_share",
"-is",
action="store_true",
default=False,
help="is login",
)
args = parser.parse_known_args()[0] if known else parser.parse_args()
return args
# yaml file parsing
def yaml_parse(file_path):
return yaml.safe_load(open(file_path, encoding="utf-8").read())
# yaml csv file parsing
def yaml_csv(file_path, file_tag):
file_suffix = Path(file_path).suffix
if file_suffix == suffix_list[0]:
# model name
file_names = [i[0] for i in list(csv.reader(open(file_path)))] # csv version
elif file_suffix == suffix_list[1]:
# model name
file_names = yaml_parse(file_path).get(file_tag) # yaml version
else:
print(f"{file_path} is not in the correct format! Program exits!")
sys.exit()
return file_names
# model loading
def model_loading(model_name, device):
# load model
model = torch.hub.load(model_path, model_name, force_reload=True, device=device, _verbose=False)
return model
# check information
def export_json(results, img_size):
return [[{
"ID": i,
"CLASS": int(result[i][5]),
"CLASS_NAME": model_cls_name_cp[int(result[i][5])],
"BOUNDING_BOX": {
"XMIN": round(result[i][:4].tolist()[0], 6),
"YMIN": round(result[i][:4].tolist()[1], 6),
"XMAX": round(result[i][:4].tolist()[2], 6),
"YMAX": round(result[i][:4].tolist()[3], 6),},
"CONF": round(float(result[i][4]), 2),
"FPS": round(1000 / float(results.t[1]), 2),
"IMG_WIDTH": img_size[0],
"IMG_HEIGHT": img_size[1],} for i in range(len(result))] for result in results.xyxyn]
# frame conversion
def pil_draw(img, countdown_msg, textFont, xyxy, font_size, opt):
img_pil = ImageDraw.Draw(img)
img_pil.rectangle(xyxy, fill=None, outline="green") # bounding box
if "label" in opt:
text_w, text_h = textFont.getsize(countdown_msg) # Label size
img_pil.rectangle(
(xyxy[0], xyxy[1], xyxy[0] + text_w, xyxy[1] + text_h),
fill="green",
outline="green",
) # label background
img_pil.multiline_text(
(xyxy[0], xyxy[1]),
countdown_msg,
fill=(205, 250, 255),
font=textFont,
align="center",
)
return img
# YOLOv5 image detection function
def yolo_det_img(img, device, model_name, infer_size, conf, iou, max_num, model_cls, opt):
global model, model_name_tmp, device_tmp
# object size num
s_obj, m_obj, l_obj = 0, 0, 0
# object area list
area_obj_all = []
# cls num stat
cls_det_stat = []
if model_name_tmp != model_name:
# Model judgment to avoid repeated loading
model_name_tmp = model_name
model = model_loading(model_name_tmp, device)
elif device_tmp != device:
device_tmp = device
model = model_loading(model_name_tmp, device)
# -------------Model tuning -------------
model.conf = conf # NMS confidence threshold
model.iou = iou # NMS IoU threshold
model.max_det = int(max_num) # Maximum number of detection frames
model.classes = model_cls # model classes
img_size = img.size # frame size
results = model(img, size=infer_size) # detection
# Data Frame
dataframe = results.pandas().xyxy[0].round(2)
# ----------------Load fonts----------------
yaml_index = cls_name.index(".yaml")
cls_name_lang = cls_name[yaml_index - 2:yaml_index]
if cls_name_lang == "zh":
# Chinese
textFont = ImageFont.truetype(str(f"{ROOT_PATH}/fonts/SimSun.ttf"), size=FONTSIZE)
elif cls_name_lang in ["en", "ru", "es", "ar"]:
# English, Russian, Spanish, Arabic
textFont = ImageFont.truetype(str(f"{ROOT_PATH}/fonts/TimesNewRoman.ttf"), size=FONTSIZE)
elif cls_name_lang == "ko":
# Korean
textFont = ImageFont.truetype(str(f"{ROOT_PATH}/fonts/malgun.ttf"), size=FONTSIZE)
for result in results.xyxyn:
for i in range(len(result)):
id = int(i) # instance ID
obj_cls_index = int(result[i][5]) # category index
obj_cls = model_cls_name_cp[obj_cls_index] # category
cls_det_stat.append(obj_cls)
# ------------ border coordinates ------------
x0 = float(result[i][:4].tolist()[0])
y0 = float(result[i][:4].tolist()[1])
x1 = float(result[i][:4].tolist()[2])
y1 = float(result[i][:4].tolist()[3])
# ------------ Actual coordinates of the border ------------
x0 = int(img_size[0] * x0)
y0 = int(img_size[1] * y0)
x1 = int(img_size[0] * x1)
y1 = int(img_size[1] * y1)
conf = float(result[i][4]) # confidence
# fps = f"{(1000 / float(results.t[1])):.2f}" # FPS
det_img = pil_draw(
img,
f"{id}-{obj_cls}:{conf:.2f}",
textFont,
[x0, y0, x1, y1],
FONTSIZE,
opt,
)
# ----------add object size----------
w_obj = x1 - x0
h_obj = y1 - y0
area_obj = w_obj * h_obj
area_obj_all.append(area_obj)
# ------------JSON generate------------
det_json = export_json(results, img.size)[0] # Detection information
det_json_format = json.dumps(det_json, sort_keys=False, indent=4, separators=(",", ":"),
ensure_ascii=False) # JSON formatting
if "json" not in opt:
det_json = None
# -------PDF generate-------
report = "./Det_Report.pdf"
if "pdf" in opt:
pdf_generate(f"{det_json_format}", report, GYD_VERSION)
else:
report = None
# --------------object size compute--------------
for i in range(len(area_obj_all)):
if (0 < area_obj_all[i] <= 32 ** 2):
s_obj = s_obj + 1
elif (32 ** 2 < area_obj_all[i] <= 96 ** 2):
m_obj = m_obj + 1
elif (area_obj_all[i] > 96 ** 2):
l_obj = l_obj + 1
sml_obj_total = s_obj + m_obj + l_obj
objSize_dict = {obj_style[i]: [s_obj, m_obj, l_obj][i] / sml_obj_total for i in range(3)}
# ------------cls stat------------
clsRatio_dict = {}
clsDet_dict = Counter(cls_det_stat)
clsDet_dict_sum = sum(clsDet_dict.values())
for k, v in clsDet_dict.items():
clsRatio_dict[k] = v / clsDet_dict_sum
return det_img, objSize_dict, clsRatio_dict, det_json, report, dataframe
# YOLOv5 video detection function
def yolo_det_video(video, device, model_name, infer_size, conf, iou, max_num, model_cls, opt):
global model, model_name_tmp, device_tmp
os.system("""
if [ -e './output.mp4' ]; then
rm ./output.mp4
fi
""")
if model_name_tmp != model_name:
# Model judgment to avoid repeated loading
model_name_tmp = model_name
model = model_loading(model_name_tmp, device)
elif device_tmp != device:
device_tmp = device
model = model_loading(model_name_tmp, device)
# -------------Model tuning -------------
model.conf = conf # NMS confidence threshold
model.iou = iou # NMS IOU threshold
model.max_det = int(max_num) # Maximum number of detection frames
model.classes = model_cls # model classes
# ----------------Load fonts----------------
yaml_index = cls_name.index(".yaml")
cls_name_lang = cls_name[yaml_index - 2:yaml_index]
if cls_name_lang == "zh":
# Chinese
textFont = ImageFont.truetype(str(f"{ROOT_PATH}/fonts/SimSun.ttf"), size=FONTSIZE)
elif cls_name_lang in ["en", "ru", "es", "ar"]:
# English, Russian, Spanish, Arabic
textFont = ImageFont.truetype(str(f"{ROOT_PATH}/fonts/TimesNewRoman.ttf"), size=FONTSIZE)
elif cls_name_lang == "ko":
# Korean
textFont = ImageFont.truetype(str(f"{ROOT_PATH}/fonts/malgun.ttf"), size=FONTSIZE)
# video->frame
gc.collect()
output_video_path = "./output.avi"
cap = cv2.VideoCapture(video)
fourcc = cv2.VideoWriter_fourcc(*"I420") # encoder
out = cv2.VideoWriter(output_video_path, fourcc, 30.0, (int(cap.get(3)), int(cap.get(4))))
while cap.isOpened():
ret, frame = cap.read()
# Determine empty frame
if not ret:
break
frame2 = frame.copy()
results = model(frame2, size=infer_size) # detection
h, w, _ = frame.shape # frame size
img_size = (w, h) # frame size
for result in results.xyxyn:
for i in range(len(result)):
id = int(i) # instance ID
obj_cls_index = int(result[i][5]) # category index
obj_cls = model_cls_name_cp[obj_cls_index] # category
# ------------ border coordinates ------------
x0 = float(result[i][:4].tolist()[0])
y0 = float(result[i][:4].tolist()[1])
x1 = float(result[i][:4].tolist()[2])
y1 = float(result[i][:4].tolist()[3])
# ------------ Actual coordinates of the border ------------
x0 = int(img_size[0] * x0)
y0 = int(img_size[1] * y0)
x1 = int(img_size[0] * x1)
y1 = int(img_size[1] * y1)
conf = float(result[i][4]) # confidence
# fps = f"{(1000 / float(results.t[1])):.2f}" # FPS
frame = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
frame = pil_draw(
frame,
f"{id}-{obj_cls}:{conf:.2f}",
textFont,
[x0, y0, x1, y1],
FONTSIZE,
opt,
)
frame = cv2.cvtColor(np.asarray(frame), cv2.COLOR_RGB2BGR)
# frame->video
out.write(frame)
out.release()
cap.release()
cv2.destroyAllWindows()
return output_video_path
def main(args):
gr.close_all()
global model, model_cls_name_cp, cls_name
source = args.source
source_video = args.source_video
img_tool = args.img_tool
nms_conf = args.nms_conf
nms_iou = args.nms_iou
model_name = args.model_name
model_cfg = args.model_cfg
cls_name = args.cls_name
device = args.device
inference_size = args.inference_size
max_detnum = args.max_detnum
slider_step = args.slider_step
is_login = args.is_login
usr_pwd = args.usr_pwd
is_share = args.is_share
is_fonts(f"{ROOT_PATH}/fonts") # Check font files
# model loading
model = model_loading(model_name, device)
model_names = yaml_csv(model_cfg, "model_names") # model names
model_cls_name = yaml_csv(cls_name, "model_cls_name") # class name
model_cls_name_cp = model_cls_name.copy() # class name
# ------------------- Input Components -------------------
inputs_img = gr.Image(image_mode="RGB", source=source, tool=img_tool, type="pil", label="original image")
inputs_device01 = gr.Radio(choices=["cuda:0", "cpu"], value=device, label="device")
inputs_model01 = gr.Dropdown(choices=model_names, value=model_name, type="value", label="model")
inputs_size01 = gr.Radio(choices=[320, 640, 1280], value=inference_size, label="inference size")
input_conf01 = gr.Slider(0, 1, step=slider_step, value=nms_conf, label="confidence threshold")
inputs_iou01 = gr.Slider(0, 1, step=slider_step, value=nms_iou, label="IoU threshold")
inputs_maxnum01 = gr.Number(value=max_detnum, label="Maximum number of detections")
inputs_clsName01 = gr.CheckboxGroup(choices=model_cls_name, value=model_cls_name, type="index", label="category")
inputs_opt01 = gr.CheckboxGroup(choices=["label", "pdf", "json"],
value=["label", "pdf"],
type="value",
label="operate")
# ------------------- Input Components -------------------
inputs_video = gr.Video(format="mp4", source=source_video, label="original video") # webcam
inputs_device02 = gr.Radio(choices=["cuda:0", "cpu"], value=device, label="device")
inputs_model02 = gr.Dropdown(choices=model_names, value=model_name, type="value", label="model")
inputs_size02 = gr.Radio(choices=[320, 640, 1280], value=inference_size, label="inference size")
input_conf02 = gr.Slider(0, 1, step=slider_step, value=nms_conf, label="confidence threshold")
inputs_iou02 = gr.Slider(0, 1, step=slider_step, value=nms_iou, label="IoU threshold")
inputs_maxnum02 = gr.Number(value=max_detnum, label="Maximum number of detections")
inputs_clsName02 = gr.CheckboxGroup(choices=model_cls_name, value=model_cls_name, type="index", label="category")
inputs_opt02 = gr.CheckboxGroup(choices=["label"], value=["label"], type="value", label="operate")
# Input parameters
inputs_img_list = [
inputs_img, # input image
inputs_device01, # device
inputs_model01, # model
inputs_size01, # inference size
input_conf01, # confidence threshold
inputs_iou01, # IoU threshold
inputs_maxnum01, # maximum number of detections
inputs_clsName01, # category
inputs_opt01, # detect operations
]
inputs_video_list = [
inputs_video, # input image
inputs_device02, # device
inputs_model02, # model
inputs_size02, # inference size
input_conf02, # confidence threshold
inputs_iou02, # IoU threshold
inputs_maxnum02, # maximum number of detections
inputs_clsName02, # category
inputs_opt02, # detect operation
]
# -------------------output component-------------------
outputs_img = gr.Image(type="pil", label="Detection image")
outputs_json = gr.JSON(label="Detection information")
outputs_pdf = gr.File(label="Download test report")
outputs_df = gr.Dataframe(max_rows=5,
overflow_row_behaviour="paginate",
type="pandas",
label="List of detection information")
outputs_objSize = gr.Label(label="Object size ratio statistics")
outputs_clsSize = gr.Label(label="Category detection proportion statistics")
# -------------------output component-------------------
outputs_video = gr.Video(format='mp4', label="Detection video")
# output parameters
outputs_img_list = [outputs_img, outputs_objSize, outputs_clsSize, outputs_json, outputs_pdf, outputs_df]
outputs_video_list = [outputs_video]
# title
title = "Gradio YOLOv5 Det v0.4"
# describe
description = "<div align='center'>Customizable target detection model, easy to install, easy to use</div>"
# article="https://gitee.com/CV_Lab/gradio_yolov5_det"
# example image
examples = [
[
"./img_example/bus.jpg",
"cpu",
"yolov5s",
640,
0.6,
0.5,
10,
["person", "bus"],
["label", "pdf"],],
[
"./img_example/giraffe.jpg",
"cpu",
"yolov5l",
320,
0.5,
0.45,
12,
["giraffe"],
["label", "pdf"],],
[
"./img_example/zidane.jpg",
"cpu",
"yolov5m",
640,
0.25,
0.5,
15,
["person", "tie"],
["pdf", "json"],],
[
"./img_example/Millenial-at-work.jpg",
"cpu",
"yolov5s6",
1280,
0.5,
0.5,
20,
["person", "chair", "cup", "laptop"],
["label", "pdf"],],]
# interface
gyd_img = gr.Interface(
fn=yolo_det_img,
inputs=inputs_img_list,
outputs=outputs_img_list,
title=title,
description=description,
# article=article,
# examples=examples,
# theme="seafoam",
# live=True, # Change output in real time
flagging_dir="run", # output directory
# allow_flagging="manual",
# flagging_options=["good", "generally", "bad"],
)
gyd_video = gr.Interface(
# fn=yolo_det_video_test,
fn=yolo_det_video,
inputs=inputs_video_list,
outputs=outputs_video_list,
title=title,
description=description,
# article=article,
# examples=examples,
# theme="seafoam",
# live=True, # Change output in real time
flagging_dir="run", # output directory
allow_flagging="never",
# flagging_options=["good", "generally", "bad"],
)
gyd = gr.TabbedInterface(interface_list=[gyd_img, gyd_video], tab_names=["Image Mode", "Video Mode"])
if not is_login:
gyd.launch(
inbrowser=True, # Automatically open default browser
show_tips=True, # Automatically display the latest features of gradio
share=is_share, # Project sharing, other devices can access
favicon_path="./icon/logo.ico", # web icon
show_error=True, # Display error message in browser console
quiet=True, # Suppress most print statements
)
else:
gyd.launch(
inbrowser=True, # Automatically open default browser
show_tips=True, # Automatically display the latest features of gradio
auth=usr_pwd, # login interface
share=is_share, # Project sharing, other devices can access
favicon_path="./icon/logo.ico", # web icon
show_error=True, # Display error message in browser console
quiet=True, # Suppress most print statements
)
if __name__ == "__main__":
args = parse_args()
main(args)