Spaces:
Runtime error
Runtime error
# Gradio YOLOv5 Det v0.5 | |
# author: Zeng Yifu(曾逸夫) | |
# creation time: 2022-07-22 | |
# email: [email protected] | |
# project homepage: https://gitee.com/CV_Lab/gradio_yolov5_det | |
import os | |
import argparse | |
import csv | |
import sys | |
csv.field_size_limit(sys.maxsize) | |
import gc | |
import json | |
from collections import Counter | |
from pathlib import Path | |
import cv2 | |
import gradio as gr | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import pandas as pd | |
import plotly.express as px | |
from matplotlib import font_manager | |
from matplotlib.ticker import MaxNLocator | |
ROOT_PATH = sys.path[0] # 项目根目录 | |
# --------------------- 字体库 --------------------- | |
SimSun_path = f"{ROOT_PATH}/fonts/SimSun.ttf" # 宋体文件路径 | |
TimesNesRoman_path = f"{ROOT_PATH}/fonts/TimesNewRoman.ttf" # 新罗马字体文件路径 | |
# 宋体 | |
SimSun = font_manager.FontProperties(fname=SimSun_path, size=12) | |
# 新罗马字体 | |
TimesNesRoman = font_manager.FontProperties(fname=TimesNesRoman_path, size=12) | |
import torch | |
import yaml | |
from PIL import Image, ImageDraw, ImageFont | |
from util.fonts_opt import is_fonts | |
from util.pdf_opt import pdf_generate | |
ROOT_PATH = sys.path[0] # 根目录 | |
# yolov5路径 | |
yolov5_path = "ultralytics/yolov5" | |
# 本地模型路径 | |
local_model_path = f"{ROOT_PATH}/models" | |
# Gradio YOLOv5 Det版本 | |
GYD_VERSION = "Gradio YOLOv5 Det v0.5" | |
# 模型名称临时变量 | |
model_name_tmp = "" | |
# 设备临时变量 | |
device_tmp = "" | |
# 文件后缀 | |
suffix_list = [".csv", ".yaml"] | |
# 字体大小 | |
FONTSIZE = 25 | |
# 目标尺寸 | |
obj_style = ["小目标", "中目标", "大目标"] | |
def parse_args(known=False): | |
parser = argparse.ArgumentParser(description="Gradio YOLOv5 Det v0.5") | |
parser.add_argument("--source", "-src", default="upload", type=str, help="image input source") | |
parser.add_argument("--source_video", "-src_v", default="upload", type=str, help="video input source") | |
parser.add_argument("--img_tool", "-it", default="editor", type=str, help="input image tool") | |
parser.add_argument("--model_name", "-mn", default="yolov5s", type=str, help="model name") | |
parser.add_argument( | |
"--model_cfg", | |
"-mc", | |
default="./model_config/model_name_p5_p6_all.yaml", | |
type=str, | |
help="model config", | |
) | |
parser.add_argument( | |
"--cls_name", | |
"-cls", | |
default="./cls_name/cls_name_zh.yaml", | |
type=str, | |
help="cls name", | |
) | |
parser.add_argument( | |
"--nms_conf", | |
"-conf", | |
default=0.5, | |
type=float, | |
help="model NMS confidence threshold", | |
) | |
parser.add_argument("--nms_iou", "-iou", default=0.45, type=float, help="model NMS IoU threshold") | |
parser.add_argument( | |
"--device", | |
"-dev", | |
default="cuda:0", | |
type=str, | |
help="cuda or cpu", | |
) | |
parser.add_argument("--inference_size", "-isz", default=640, type=int, help="model inference size") | |
parser.add_argument("--max_detnum", "-mdn", default=50, type=float, help="model max det num") | |
parser.add_argument("--slider_step", "-ss", default=0.05, type=float, help="slider step") | |
parser.add_argument( | |
"--is_login", | |
"-isl", | |
action="store_true", | |
default=False, | |
help="is login", | |
) | |
parser.add_argument('--usr_pwd', | |
"-up", | |
nargs='+', | |
type=str, | |
default=["admin", "admin"], | |
help="user & password for login") | |
parser.add_argument( | |
"--is_share", | |
"-is", | |
action="store_true", | |
default=False, | |
help="is login", | |
) | |
args = parser.parse_known_args()[0] if known else parser.parse_args() | |
return args | |
# yaml文件解析 | |
def yaml_parse(file_path): | |
return yaml.safe_load(open(file_path, encoding="utf-8").read()) | |
# yaml csv 文件解析 | |
def yaml_csv(file_path, file_tag): | |
file_suffix = Path(file_path).suffix | |
if file_suffix == suffix_list[0]: | |
# 模型名称 | |
file_names = [i[0] for i in list(csv.reader(open(file_path)))] # csv版 | |
elif file_suffix == suffix_list[1]: | |
# 模型名称 | |
file_names = yaml_parse(file_path).get(file_tag) # yaml版 | |
else: | |
print(f"{file_path}格式不正确!程序退出!") | |
sys.exit() | |
return file_names | |
# 模型加载 | |
def model_loading(model_name, device, opt=[]): | |
# 加载本地模型 | |
try: | |
torch.hub._validate_not_a_forked_repo = lambda a, b, c: True | |
model = torch.hub.load( | |
yolov5_path, | |
"custom", | |
path=f"{local_model_path}/{model_name}", | |
device=device, | |
force_reload=[True if "refresh_yolov5" in opt else False][0], | |
_verbose=True, | |
) | |
except Exception as e: | |
print("模型加载失败!") | |
print(e) | |
return False | |
else: | |
print(f"🚀 欢迎使用{GYD_VERSION},{model_name}加载成功!") | |
return model | |
# 检测信息 | |
def export_json(results, img_size): | |
return [[{ | |
"ID": i, | |
"CLASS": int(result[i][5]), | |
"CLASS_NAME": model_cls_name_cp[int(result[i][5])], | |
"BOUNDING_BOX": { | |
"XMIN": round(result[i][:4].tolist()[0], 6), | |
"YMIN": round(result[i][:4].tolist()[1], 6), | |
"XMAX": round(result[i][:4].tolist()[2], 6), | |
"YMAX": round(result[i][:4].tolist()[3], 6),}, | |
"CONF": round(float(result[i][4]), 2), | |
"FPS": round(1000 / float(results.t[1]), 2), | |
"IMG_WIDTH": img_size[0], | |
"IMG_HEIGHT": img_size[1],} for i in range(len(result))] for result in results.xyxyn] | |
# 标签和边界框颜色设置 | |
def color_set(cls_num): | |
color_list = [] | |
for i in range(cls_num): | |
color = tuple(np.random.choice(range(256), size=3)) | |
# color = ["#"+''.join([random.choice('0123456789ABCDEF') for j in range(6)])] | |
color_list.append(color) | |
return color_list | |
# 检测绘制 | |
def pil_draw(img, score_l, bbox_l, cls_l, cls_index_l, textFont, color_list, opt): | |
img_pil = ImageDraw.Draw(img) | |
id = 0 | |
for score, (xmin, ymin, xmax, ymax), label, cls_index in zip(score_l, bbox_l, cls_l, cls_index_l): | |
img_pil.rectangle([xmin, ymin, xmax, ymax], fill=None, outline=color_list[cls_index], width=2) # 边界框 | |
countdown_msg = f"{id}-{label} {score:.2f}" | |
text_w, text_h = textFont.getsize(countdown_msg) # 标签尺寸 | |
if "label" in opt: | |
# 标签背景 | |
img_pil.rectangle( | |
(xmin, ymin, xmin + text_w, ymin + text_h), | |
fill=color_list[cls_index], | |
outline=color_list[cls_index], | |
) | |
# 标签 | |
img_pil.multiline_text( | |
(xmin, ymin), | |
countdown_msg, | |
fill=(255, 255, 255), | |
font=textFont, | |
align="center", | |
) | |
id += 1 | |
return img | |
# YOLOv5图片检测函数 | |
def yolo_det_img(img, device, model_name, infer_size, conf, iou, max_num, model_cls, opt): | |
global model, model_name_tmp, device_tmp | |
if img is None or img == "": | |
# 判断是否有图片存在 | |
print("图片不存在!") | |
return None, None, None, None, None, None, None | |
det_img = img.copy() | |
# 目标尺寸个数 | |
s_obj, m_obj, l_obj = 0, 0, 0 | |
area_obj_all = [] # 目标面积 | |
score_det_stat = [] # 置信度统计 | |
bbox_det_stat = [] # 边界框统计 | |
cls_det_stat = [] # 类别数量统计 | |
cls_index_det_stat = [] # 类别索引统计 | |
pdf_csv_xlsx = [] # 文件生成列表 | |
if model_name_tmp != model_name: | |
# 模型判断,避免反复加载 | |
model_name_tmp = model_name | |
print(f"正在加载模型{model_name_tmp}......") | |
model = model_loading(model_name_tmp, device, opt) | |
elif device_tmp != device: | |
# 设备判断,避免反复加载 | |
device_tmp = device | |
print(f"正在加载模型{model_name_tmp}......") | |
model = model_loading(model_name_tmp, device, opt) | |
else: | |
print(f"正在加载模型{model_name_tmp}......") | |
model = model_loading(model_name_tmp, device, opt) | |
# ----------- 模型调参 ----------- | |
model.conf = conf # NMS 置信度阈值 | |
model.iou = iou # NMS IoU阈值 | |
model.max_det = int(max_num) # 最大检测框数 | |
model.classes = model_cls # 模型类别 | |
color_list = color_set(len(model_cls_name_cp)) # 设置颜色 | |
img_size = img.size # 帧尺寸 | |
results = model(img, size=infer_size) # 检测 | |
# 判断检测对象是否为空 | |
# 参考:https://gitee.com/CV_Lab/face-labeling/blob/master/face_labeling.py | |
is_results_null = results.xyxyn[0].shape == torch.Size([0, 6]) | |
if not is_results_null: | |
# ---------------- 目标裁剪 ---------------- | |
crops = results.crop(save=False) | |
img_crops = [] | |
for i in range(len(crops)): | |
img_crops.append(crops[i]["im"][..., ::-1]) | |
# 数据表 | |
dataframe = results.pandas().xyxy[0].round(2) | |
report = "./Det_Report.pdf" | |
det_csv = "./Det_Report.csv" | |
det_excel = "./Det_Report.xlsx" | |
if "csv" in opt: | |
dataframe.to_csv(det_csv, index=False) | |
pdf_csv_xlsx.append(det_csv) | |
else: | |
det_csv = None | |
if "excel" in opt: | |
dataframe.to_excel(det_excel, sheet_name='sheet1', index=False) | |
pdf_csv_xlsx.append(det_excel) | |
else: | |
det_excel = None | |
# ---------------- 加载字体 ---------------- | |
yaml_index = cls_name.index(".yaml") | |
cls_name_lang = cls_name[yaml_index - 2:yaml_index] | |
if cls_name_lang == "zh": | |
# 中文 | |
textFont = ImageFont.truetype(str(f"{ROOT_PATH}/fonts/SimSun.ttf"), size=FONTSIZE) | |
elif cls_name_lang in ["en", "ru", "es", "ar"]: | |
# 英文、俄语、西班牙语、阿拉伯语 | |
textFont = ImageFont.truetype(str(f"{ROOT_PATH}/fonts/TimesNewRoman.ttf"), size=FONTSIZE) | |
elif cls_name_lang == "ko": | |
# 韩语 | |
textFont = ImageFont.truetype(str(f"{ROOT_PATH}/fonts/malgun.ttf"), size=FONTSIZE) | |
for result in results.xyxyn: | |
for i in range(len(result)): | |
# id = int(i) # 实例ID | |
obj_cls_index = int(result[i][5]) # 类别索引 | |
cls_index_det_stat.append(obj_cls_index) | |
obj_cls = model_cls_name_cp[obj_cls_index] # 类别 | |
cls_det_stat.append(obj_cls) | |
# ------------ 边框坐标 ------------ | |
x0 = float(result[i][:4].tolist()[0]) | |
y0 = float(result[i][:4].tolist()[1]) | |
x1 = float(result[i][:4].tolist()[2]) | |
y1 = float(result[i][:4].tolist()[3]) | |
# ------------ 边框实际坐标 ------------ | |
x0 = int(img_size[0] * x0) | |
y0 = int(img_size[1] * y0) | |
x1 = int(img_size[0] * x1) | |
y1 = int(img_size[1] * y1) | |
bbox_det_stat.append((x0, y0, x1, y1)) | |
conf = float(result[i][4]) # 置信度 | |
score_det_stat.append(conf) | |
# fps = f"{(1000 / float(results.t[1])):.2f}" # FPS | |
# ---------- 加入目标尺寸 ---------- | |
w_obj = x1 - x0 | |
h_obj = y1 - y0 | |
area_obj = w_obj * h_obj | |
area_obj_all.append(area_obj) | |
det_img = pil_draw(img, score_det_stat, bbox_det_stat, cls_det_stat, cls_index_det_stat, textFont, color_list, | |
opt) | |
# ------------ JSON生成 ------------ | |
det_json = export_json(results, img.size)[0] # 检测信息 | |
det_json_format = json.dumps(det_json, sort_keys=False, indent=4, separators=(",", ":"), | |
ensure_ascii=False) # JSON格式化 | |
if "json" not in opt: | |
det_json = None | |
# -------------- PDF生成 -------------- | |
if "pdf" in opt: | |
pdf_generate(f"{det_json_format}", report, GYD_VERSION) | |
pdf_csv_xlsx.append(report) | |
else: | |
report = None | |
# -------------- 目标尺寸计算 -------------- | |
for i in range(len(area_obj_all)): | |
if (0 < area_obj_all[i] <= 32 ** 2): | |
s_obj = s_obj + 1 | |
elif (32 ** 2 < area_obj_all[i] <= 96 ** 2): | |
m_obj = m_obj + 1 | |
elif (area_obj_all[i] > 96 ** 2): | |
l_obj = l_obj + 1 | |
sml_obj_total = s_obj + m_obj + l_obj | |
objSize_dict = {} | |
objSize_dict = {obj_style[i]: [s_obj, m_obj, l_obj][i] / sml_obj_total for i in range(3)} | |
# ------------ 类别统计 ------------ | |
clsRatio_dict = {} | |
clsDet_dict = Counter(cls_det_stat) | |
clsDet_dict_sum = sum(clsDet_dict.values()) | |
for k, v in clsDet_dict.items(): | |
clsRatio_dict[k] = v / clsDet_dict_sum | |
return det_img, img_crops, objSize_dict, clsRatio_dict, dataframe, det_json, pdf_csv_xlsx | |
else: | |
print("图片目标不存在!") | |
return None, None, None, None, None, None, None | |
# YOLOv5视频检测函数 | |
def yolo_det_video(video, device, model_name, infer_size, conf, iou, max_num, model_cls, opt, draw_style): | |
global model, model_name_tmp, device_tmp | |
if video is None or video == "": | |
# 判断是否有图片存在 | |
print("视频不存在!") | |
return None, None, None | |
# 目标尺寸个数 | |
s_obj, m_obj, l_obj = 0, 0, 0 | |
area_obj_all = [] # 目标面积 | |
s_list, m_list, l_list = [], [], [] | |
score_det_stat = [] # 置信度统计 | |
bbox_det_stat = [] # 边界框统计 | |
cls_det_stat = [] # 类别数量统计 | |
cls_index_det_stat = [] # 类别索引统计 | |
fps_list = [] | |
frame_count = 0 # 帧数 | |
fps = 0 # FPS | |
os.system(""" | |
if [ -e './output.mp4' ]; then | |
rm ./output.mp4 | |
fi | |
""") | |
if model_name_tmp != model_name: | |
# 模型判断,避免反复加载 | |
model_name_tmp = model_name | |
print(f"正在加载模型{model_name_tmp}......") | |
model = model_loading(model_name_tmp, device, opt) | |
elif device_tmp != device: | |
# 设备判断,避免反复加载 | |
device_tmp = device | |
print(f"正在加载模型{model_name_tmp}......") | |
model = model_loading(model_name_tmp, device, opt) | |
else: | |
print(f"正在加载模型{model_name_tmp}......") | |
model = model_loading(model_name_tmp, device, opt) | |
# ----------- 模型调参 ----------- | |
model.conf = conf # NMS 置信度阈值 | |
model.iou = iou # NMS IOU阈值 | |
model.max_det = int(max_num) # 最大检测框数 | |
model.classes = model_cls # 模型类别 | |
color_list = color_set(len(model_cls_name_cp)) # 设置颜色 | |
# ---------------- 加载字体 ---------------- | |
yaml_index = cls_name.index(".yaml") | |
cls_name_lang = cls_name[yaml_index - 2:yaml_index] | |
if cls_name_lang == "zh": | |
# 中文 | |
textFont = ImageFont.truetype(str(f"{ROOT_PATH}/fonts/SimSun.ttf"), size=FONTSIZE) | |
elif cls_name_lang in ["en", "ru", "es", "ar"]: | |
# 英文、俄语、西班牙语、阿拉伯语 | |
textFont = ImageFont.truetype(str(f"{ROOT_PATH}/fonts/TimesNewRoman.ttf"), size=FONTSIZE) | |
elif cls_name_lang == "ko": | |
# 韩语 | |
textFont = ImageFont.truetype(str(f"{ROOT_PATH}/fonts/malgun.ttf"), size=FONTSIZE) | |
# video->frame | |
gc.collect() | |
output_video_path = "./output.avi" | |
cap = cv2.VideoCapture(video) | |
fourcc = cv2.VideoWriter_fourcc(*"I420") # 编码器 | |
out = cv2.VideoWriter(output_video_path, fourcc, 30.0, (int(cap.get(3)), int(cap.get(4)))) | |
if cap.isOpened(): | |
while cap.isOpened(): | |
ret, frame = cap.read() | |
# 判断空帧 | |
if not ret: | |
break | |
frame_count += 1 # 帧数自增 | |
results = model(frame, size=infer_size) # 检测 | |
h, w, _ = frame.shape # 帧尺寸 | |
img_size = (w, h) # 帧尺寸 | |
for result in results.xyxyn: | |
for i in range(len(result)): | |
# id = int(i) # 实例ID | |
obj_cls_index = int(result[i][5]) # 类别索引 | |
cls_index_det_stat.append(obj_cls_index) | |
obj_cls = model_cls_name_cp[obj_cls_index] # 类别 | |
cls_det_stat.append(obj_cls) | |
# ------------边框坐标------------ | |
x0 = float(result[i][:4].tolist()[0]) | |
y0 = float(result[i][:4].tolist()[1]) | |
x1 = float(result[i][:4].tolist()[2]) | |
y1 = float(result[i][:4].tolist()[3]) | |
# ------------边框实际坐标------------ | |
x0 = int(img_size[0] * x0) | |
y0 = int(img_size[1] * y0) | |
x1 = int(img_size[0] * x1) | |
y1 = int(img_size[1] * y1) | |
bbox_det_stat.append((x0, y0, x1, y1)) | |
conf = float(result[i][4]) # 置信度 | |
score_det_stat.append(conf) | |
fps = f"{(1000 / float(results.t[1])):.2f}" # FPS | |
# ---------- 加入目标尺寸 ---------- | |
w_obj = x1 - x0 | |
h_obj = y1 - y0 | |
area_obj = w_obj * h_obj | |
area_obj_all.append(area_obj) | |
# 判断检测对象是否为空 | |
# 参考:https://gitee.com/CV_Lab/face-labeling/blob/master/face_labeling.py | |
is_results_null = results.xyxyn[0].shape == torch.Size([0, 6]) | |
if not is_results_null: | |
fps_list.append(float(fps)) | |
else: | |
fps_list.append(0.0) | |
frame = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) | |
frame = pil_draw(frame, score_det_stat, bbox_det_stat, cls_det_stat, cls_index_det_stat, textFont, | |
color_list, opt) | |
frame = cv2.cvtColor(np.asarray(frame), cv2.COLOR_RGB2BGR) | |
# frame->video | |
out.write(frame) | |
# ----- 清空统计列表 ----- | |
score_det_stat = [] | |
bbox_det_stat = [] | |
cls_det_stat = [] | |
cls_index_det_stat = [] | |
# -------------- 目标尺寸计算 -------------- | |
for i in range(len(area_obj_all)): | |
if (0 < area_obj_all[i] <= 32 ** 2): | |
s_obj = s_obj + 1 | |
elif (32 ** 2 < area_obj_all[i] <= 96 ** 2): | |
m_obj = m_obj + 1 | |
elif (area_obj_all[i] > 96 ** 2): | |
l_obj = l_obj + 1 | |
s_list.append(s_obj) | |
m_list.append(m_obj) | |
l_list.append(l_obj) | |
# 目标尺寸个数 | |
s_obj, m_obj, l_obj = 0, 0, 0 | |
# 目标面积 | |
area_obj_all = [] | |
out.release() | |
cap.release() | |
# cv2.destroyAllWindows() | |
df_objSize = pd.DataFrame({"fID": list(range(frame_count))}) | |
df_objSize[obj_style[0]] = tuple(s_list) | |
df_objSize[obj_style[1]] = tuple(m_list) | |
df_objSize[obj_style[2]] = tuple(l_list) | |
print(df_objSize) | |
if draw_style == "Plotly": | |
# -------------------- 帧数-目标尺寸数图 -------------------- | |
fig_objSize = px.scatter(df_objSize, x="fID", y=obj_style) # 散点图 | |
# fig_objSize = px.line(df_objSize, x="fID", y=obj_style, markers=True) # 折线图 | |
fig_objSize.update_layout(title="帧数-目标尺寸数", xaxis_title="帧数", yaxis_title="目标尺寸数") | |
# -------------------- 帧数-FPS图 -------------------- | |
fig_fps = px.scatter(df_objSize, x="fID", y=fps_list) | |
# fig_fps = px.line(df_objSize, x="fID", y=fps_list, markers=True) | |
fig_fps.update_layout(title="帧数-FPS", xaxis_title="帧数", yaxis_title="FPS") | |
elif draw_style == "Matplotlib": | |
# -------------------- 帧数-目标尺寸数图 -------------------- | |
fig_objSize = plt.figure() | |
# -------------------- 散点图 -------------------- | |
plt.scatter(df_objSize['fID'], df_objSize[obj_style[0]]) | |
plt.scatter(df_objSize['fID'], df_objSize[obj_style[1]]) | |
plt.scatter(df_objSize['fID'], df_objSize[obj_style[2]]) | |
# plt.plot(df_objSize['fID'], df_objSize[obj_style]) # 折线图 | |
plt.title("帧数-目标尺寸数图", fontsize=12, fontproperties=SimSun) | |
plt.xlabel("帧数", fontsize=12, fontproperties=SimSun) | |
plt.ylabel("目标尺寸数", fontsize=12, fontproperties=SimSun) | |
plt.legend(obj_style, prop=SimSun, fontsize=12, loc="best") | |
# -------------------- 帧数-FPS图 -------------------- | |
fig_fps = plt.figure() | |
plt.scatter(df_objSize['fID'], fps_list) | |
# plt.plot(df_objSize['fID'], df_objSize[obj_style]) # 折线图 | |
plt.title("帧数-FPS", fontsize=12, fontproperties=SimSun) | |
plt.xlabel("帧数", fontsize=12, fontproperties=SimSun) | |
plt.ylabel("FPS", fontsize=12, fontproperties=SimSun) | |
return output_video_path, fig_objSize, fig_fps | |
else: | |
print("视频加载失败!") | |
return None, None, None | |
def main(args): | |
gr.close_all() | |
global model, model_cls_name_cp, cls_name | |
source = args.source | |
source_video = args.source_video | |
img_tool = args.img_tool | |
nms_conf = args.nms_conf | |
nms_iou = args.nms_iou | |
model_name = args.model_name | |
model_cfg = args.model_cfg | |
cls_name = args.cls_name | |
device = args.device | |
inference_size = args.inference_size | |
max_detnum = args.max_detnum | |
slider_step = args.slider_step | |
is_login = args.is_login | |
usr_pwd = args.usr_pwd | |
is_share = args.is_share | |
is_fonts(f"{ROOT_PATH}/fonts") # 检查字体文件 | |
# 模型加载 | |
model = model_loading(model_name, device) | |
model_names = yaml_csv(model_cfg, "model_names") # 模型名称 | |
model_cls_name = yaml_csv(cls_name, "model_cls_name") # 类别名称 | |
model_cls_name_cp = model_cls_name.copy() # 类别名称 | |
# ------------------- 图片模式输入组件 ------------------- | |
inputs_img = gr.Image(image_mode="RGB", source=source, tool=img_tool, type="pil", label="原始图片") | |
inputs_device01 = gr.Radio(choices=["cuda:0", "cpu"], value=device, label="设备") | |
inputs_model01 = gr.Dropdown(choices=model_names, value=model_name, type="value", label="模型") | |
inputs_size01 = gr.Slider(384, 1536, step=128, value=inference_size, label="推理尺寸") | |
input_conf01 = gr.Slider(0, 1, step=slider_step, value=nms_conf, label="置信度阈值") | |
inputs_iou01 = gr.Slider(0, 1, step=slider_step, value=nms_iou, label="IoU 阈值") | |
inputs_maxnum01 = gr.Number(value=max_detnum, label="最大检测数") | |
inputs_clsName01 = gr.CheckboxGroup(choices=model_cls_name, value=model_cls_name, type="index", label="类别") | |
inputs_opt01 = gr.CheckboxGroup(choices=["refresh_yolov5", "label", "pdf", "json", "csv", "excel"], | |
value=["label", "pdf"], | |
type="value", | |
label="操作") | |
# ------------------- 视频模式输入组件 ------------------- | |
inputs_video = gr.Video(format="mp4", source=source_video, mirror_webcam=False, label="原始视频") # webcam | |
inputs_device02 = gr.Radio(choices=["cuda:0", "cpu"], value=device, label="设备") | |
inputs_model02 = gr.Dropdown(choices=model_names, value=model_name, type="value", label="模型") | |
inputs_size02 = gr.Slider(384, 1536, step=128, value=inference_size, label="推理尺寸") | |
input_conf02 = gr.Slider(0, 1, step=slider_step, value=nms_conf, label="置信度阈值") | |
inputs_iou02 = gr.Slider(0, 1, step=slider_step, value=nms_iou, label="IoU 阈值") | |
inputs_maxnum02 = gr.Number(value=max_detnum, label="最大检测数") | |
inputs_clsName02 = gr.CheckboxGroup(choices=model_cls_name, value=model_cls_name, type="index", label="类别") | |
inputs_opt02 = gr.CheckboxGroup(choices=["refresh_yolov5", "label"], value=["label"], type="value", label="操作") | |
inputs_draw02 = gr.Radio(choices=["Matplotlib", "Plotly"], value="Matplotlib", label="绘图") | |
# ------------------- 图片模式输入参数 ------------------- | |
inputs_img_list = [ | |
inputs_img, # 输入图片 | |
inputs_device01, # 设备 | |
inputs_model01, # 模型 | |
inputs_size01, # 推理尺寸 | |
input_conf01, # 置信度阈值 | |
inputs_iou01, # IoU阈值 | |
inputs_maxnum01, # 最大检测数 | |
inputs_clsName01, # 类别 | |
inputs_opt01, # 检测操作 | |
] | |
# ------------------- 视频模式输入参数 ------------------- | |
inputs_video_list = [ | |
inputs_video, # 输入图片 | |
inputs_device02, # 设备 | |
inputs_model02, # 模型 | |
inputs_size02, # 推理尺寸 | |
input_conf02, # 置信度阈值 | |
inputs_iou02, # IoU阈值 | |
inputs_maxnum02, # 最大检测数 | |
inputs_clsName02, # 类别 | |
inputs_opt02, # 检测操作 | |
inputs_draw02, # 绘图操作 | |
] | |
# ------------------- 图片模式输出组件 ------------------- | |
outputs_img = gr.Image(type="pil", label="检测图片") | |
outputs_df = gr.Dataframe(max_rows=5, overflow_row_behaviour="paginate", type="pandas", label="检测信息列表") | |
outputs_crops = gr.Gallery(label="目标裁剪") | |
outputs_objSize = gr.Label(label="目标尺寸占比统计") | |
outputs_clsSize = gr.Label(label="类别检测占比统计") | |
outputs_json = gr.JSON(label="检测信息") | |
outputs_pdf = gr.File(label="检测报告") | |
# ------------------- 视频模式输出组件 ------------------- | |
outputs_video = gr.Video(format='mp4', label="检测视频") | |
outputs_frame_objSize_plot = gr.Plot(label="帧数-目标尺寸数") | |
outputs_frame_fps_plot = gr.Plot(label="帧数-FPS") | |
# ------------------- 图片模式输出参数 ------------------- | |
outputs_img_list = [ | |
outputs_img, outputs_crops, outputs_objSize, outputs_clsSize, outputs_df, outputs_json, outputs_pdf] | |
# ------------------- 视频模式输出参数 ------------------- | |
outputs_video_list = [outputs_video, outputs_frame_objSize_plot, outputs_frame_fps_plot] | |
# 标题 | |
title = "Gradio YOLOv5 Det v0.5" | |
# 描述 | |
description = "<div align='center'>可自定义目标检测模型、安装简单、使用方便</div>" | |
# article="https://gitee.com/CV_Lab/gradio_yolov5_det" | |
# 示例图片 | |
examples = [ | |
[ | |
"./img_examples/bus.jpg", | |
"cpu", | |
"yolov5s", | |
640, | |
0.6, | |
0.5, | |
10, | |
["人", "公交车"], | |
["label", "pdf"],], | |
[ | |
"./img_examples/giraffe.jpg", | |
"cuda:0", | |
"yolov5l", | |
320, | |
0.5, | |
0.45, | |
12, | |
["长颈鹿"], | |
["label", "pdf"],], | |
[ | |
"./img_examples/zidane.jpg", | |
"cuda:0", | |
"yolov5m", | |
640, | |
0.6, | |
0.5, | |
15, | |
["人", "领带"], | |
["pdf", "json"],], | |
[ | |
"./img_examples/Millenial-at-work.jpg", | |
"cuda:0", | |
"yolov5s6", | |
1280, | |
0.5, | |
0.5, | |
20, | |
["人", "椅子", "杯子", "笔记本电脑"], | |
["label", "pdf", "csv", "excel"],],] | |
# 接口 | |
gyd_img = gr.Interface( | |
fn=yolo_det_img, | |
inputs=inputs_img_list, | |
outputs=outputs_img_list, | |
title=title, | |
description=description, | |
# article=article, | |
examples=examples, | |
# theme="seafoam", | |
# live=True, # 实时变更输出 | |
flagging_dir="run", # 输出目录 | |
# allow_flagging="manual", | |
# flagging_options=["good", "generally", "bad"], | |
) | |
gyd_video = gr.Interface( | |
fn=yolo_det_video, | |
inputs=inputs_video_list, | |
outputs=outputs_video_list, | |
title=title, | |
description=description, | |
# article=article, | |
# examples=examples, | |
# theme="seafoam", | |
# live=True, # 实时变更输出 | |
flagging_dir="run", # 输出目录 | |
allow_flagging="never", | |
# flagging_options=["good", "generally", "bad"], | |
) | |
gyd = gr.TabbedInterface(interface_list=[gyd_img, gyd_video], tab_names=["图片模式", "视频模式"]) | |
if not is_login: | |
gyd.launch( | |
inbrowser=True, # 自动打开默认浏览器 | |
show_tips=True, # 自动显示gradio最新功能 | |
share=is_share, # 项目共享,其他设备可以访问 | |
favicon_path="./icon/logo.ico", # 网页图标 | |
show_error=True, # 在浏览器控制台中显示错误信息 | |
quiet=True, # 禁止大多数打印语句 | |
) | |
else: | |
gyd.launch( | |
inbrowser=True, # 自动打开默认浏览器 | |
show_tips=True, # 自动显示gradio最新功能 | |
auth=usr_pwd, # 登录界面 | |
share=is_share, # 项目共享,其他设备可以访问 | |
favicon_path="./icon/logo.ico", # 网页图标 | |
show_error=True, # 在浏览器控制台中显示错误信息 | |
quiet=True, # 禁止大多数打印语句 | |
) | |
if __name__ == "__main__": | |
args = parse_args() | |
main(args) | |