# YOLOv5 🚀 by Ultralytics, GPL-3.0 license """ Auto-batch utils """ from copy import deepcopy import numpy as np import torch from utils.general import LOGGER, colorstr from utils.torch_utils import profile def check_train_batch_size(model, imgsz=640, amp=True): # Check YOLOv5 training batch size with torch.cuda.amp.autocast(amp): return autobatch(deepcopy(model).train(), imgsz) # compute optimal batch size def autobatch(model, imgsz=640, fraction=0.8, batch_size=16): # Automatically estimate best batch size to use `fraction` of available CUDA memory # Usage: # import torch # from utils.autobatch import autobatch # model = torch.hub.load('ultralytics/yolov5', 'yolov5s', autoshape=False) # print(autobatch(model)) # Check device prefix = colorstr('AutoBatch: ') LOGGER.info(f'{prefix}Computing optimal batch size for --imgsz {imgsz}') device = next(model.parameters()).device # get model device if device.type == 'cpu': LOGGER.info(f'{prefix}CUDA not detected, using default CPU batch-size {batch_size}') return batch_size # Inspect CUDA memory gb = 1 << 30 # bytes to GiB (1024 ** 3) d = str(device).upper() # 'CUDA:0' properties = torch.cuda.get_device_properties(device) # device properties t = properties.total_memory / gb # GiB total r = torch.cuda.memory_reserved(device) / gb # GiB reserved a = torch.cuda.memory_allocated(device) / gb # GiB allocated f = t - (r + a) # GiB free LOGGER.info(f'{prefix}{d} ({properties.name}) {t:.2f}G total, {r:.2f}G reserved, {a:.2f}G allocated, {f:.2f}G free') # Profile batch sizes batch_sizes = [1, 2, 4, 8, 16] try: img = [torch.empty(b, 3, imgsz, imgsz) for b in batch_sizes] results = profile(img, model, n=3, device=device) except Exception as e: LOGGER.warning(f'{prefix}{e}') # Fit a solution y = [x[2] for x in results if x] # memory [2] p = np.polyfit(batch_sizes[:len(y)], y, deg=1) # first degree polynomial fit b = int((f * fraction - p[1]) / p[0]) # y intercept (optimal batch size) if None in results: # some sizes failed i = results.index(None) # first fail index if b >= batch_sizes[i]: # y intercept above failure point b = batch_sizes[max(i - 1, 0)] # select prior safe point if b < 1 or b > 1024: # b outside of safe range b = batch_size LOGGER.warning(f'{prefix}WARNING: ⚠️ CUDA anomaly detected, recommend restart environment and retry command.') fraction = np.polyval(p, b) / t # actual fraction predicted LOGGER.info(f'{prefix}Using batch-size {b} for {d} {t * fraction:.2f}G/{t:.2f}G ({fraction * 100:.0f}%) ✅') return b