Spaces:
Runtime error
Runtime error
eliujl
commited on
Commit
·
eef7615
1
Parent(s):
7ee9dd1
Updated with local LLMs
Browse filesUpdated with options of local Llama2 and Mistral models, using a local embedding model. Requires to pre-download the LLM models to a local folder. To be further improved.
app.py
CHANGED
@@ -6,9 +6,12 @@ from langchain.document_loaders import (
|
|
6 |
UnstructuredFileLoader,
|
7 |
)
|
8 |
from langchain.embeddings.openai import OpenAIEmbeddings
|
|
|
9 |
from langchain.chat_models import ChatOpenAI
|
10 |
from langchain.vectorstores import Pinecone, Chroma
|
11 |
from langchain.chains import ConversationalRetrievalChain
|
|
|
|
|
12 |
import os
|
13 |
import langchain
|
14 |
import pinecone
|
@@ -19,6 +22,10 @@ import json
|
|
19 |
OPENAI_API_KEY = ''
|
20 |
PINECONE_API_KEY = ''
|
21 |
PINECONE_API_ENV = ''
|
|
|
|
|
|
|
|
|
22 |
langchain.verbose = False
|
23 |
|
24 |
|
@@ -112,8 +119,15 @@ def setup_docsearch(use_pinecone, pinecone_index_name, embeddings, chroma_collec
|
|
112 |
index_client = pinecone.Index(pinecone_index_name)
|
113 |
# Get the index information
|
114 |
index_info = index_client.describe_index_stats()
|
115 |
-
namespace_name = ''
|
116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
else:
|
118 |
raise ValueError('''Cannot find the specified Pinecone index.
|
119 |
Create one in pinecone.io or using, e.g.,
|
@@ -132,14 +146,69 @@ def get_response(query, chat_history, CRqa):
|
|
132 |
result = CRqa({"question": query, "chat_history": chat_history})
|
133 |
return result['answer'], result['source_documents']
|
134 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
|
136 |
def setup_em_llm(OPENAI_API_KEY, temperature, r_llm):
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
return embeddings, llm
|
144 |
|
145 |
|
@@ -166,38 +235,53 @@ def main(pinecone_index_name, chroma_collection_name, persist_directory, docsear
|
|
166 |
latest_chats = []
|
167 |
reply = ''
|
168 |
source = ''
|
|
|
169 |
# Get user input of whether to use Pinecone or not
|
170 |
col1, col2, col3 = st.columns([1, 1, 1])
|
171 |
# create the radio buttons and text input fields
|
172 |
with col1:
|
173 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
r_ingest = st.radio(
|
175 |
'Ingest file(s)?', ('Yes', 'No'))
|
176 |
-
|
177 |
-
|
178 |
-
|
|
|
179 |
with col2:
|
180 |
-
OPENAI_API_KEY = st.text_input(
|
181 |
-
"OpenAI API key:", type="password")
|
182 |
temperature = st.slider('Temperature', 0.0, 1.0, 0.1)
|
183 |
k_sources = st.slider('# source(s) to print out', 0, 20, 2)
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
PINECONE_API_ENV = st.text_input(
|
192 |
-
"Pinecone API env:", type="password")
|
193 |
-
pinecone_index_name = st.text_input('Pinecone index:')
|
194 |
-
pinecone.init(api_key=PINECONE_API_KEY,
|
195 |
-
environment=PINECONE_API_ENV)
|
196 |
else:
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
201 |
|
202 |
if pinecone_index_name or chroma_collection_name:
|
203 |
session_name = pinecone_index_name + chroma_collection_name
|
@@ -220,8 +304,19 @@ def main(pinecone_index_name, chroma_collection_name, persist_directory, docsear
|
|
220 |
# number of sources (split-documents when ingesting files); default is 4
|
221 |
k = min([20, n_texts])
|
222 |
retriever = setup_retriever(docsearch, k)
|
|
|
|
|
|
|
|
|
|
|
223 |
CRqa = ConversationalRetrievalChain.from_llm(
|
224 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
225 |
|
226 |
st.title(':blue[Chatbot]')
|
227 |
# Get user input
|
@@ -239,6 +334,7 @@ def main(pinecone_index_name, chroma_collection_name, persist_directory, docsear
|
|
239 |
chat_history = [(user, bot)
|
240 |
for user, bot in chat_history]
|
241 |
reply, source = get_response(query, chat_history, CRqa)
|
|
|
242 |
# Update the chat history with the user input and system response
|
243 |
chat_history.append(('User', query))
|
244 |
chat_history.append(('Bot', reply))
|
|
|
6 |
UnstructuredFileLoader,
|
7 |
)
|
8 |
from langchain.embeddings.openai import OpenAIEmbeddings
|
9 |
+
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
10 |
from langchain.chat_models import ChatOpenAI
|
11 |
from langchain.vectorstores import Pinecone, Chroma
|
12 |
from langchain.chains import ConversationalRetrievalChain
|
13 |
+
from langchain.prompts import PromptTemplate
|
14 |
+
from langchain.memory import ConversationBufferMemory
|
15 |
import os
|
16 |
import langchain
|
17 |
import pinecone
|
|
|
22 |
OPENAI_API_KEY = ''
|
23 |
PINECONE_API_KEY = ''
|
24 |
PINECONE_API_ENV = ''
|
25 |
+
gpt3p5 = 'gpt-3.5-turbo-1106'
|
26 |
+
gpt4 = 'gpt-4-1106-preview'
|
27 |
+
gpt_local_mistral = 'mistral_7b'
|
28 |
+
gpt_local_llama = 'llama_13b'
|
29 |
langchain.verbose = False
|
30 |
|
31 |
|
|
|
119 |
index_client = pinecone.Index(pinecone_index_name)
|
120 |
# Get the index information
|
121 |
index_info = index_client.describe_index_stats()
|
122 |
+
# namespace_name = ''
|
123 |
+
# if index_info is not None:
|
124 |
+
# print(index_info)
|
125 |
+
# print(index_info['namespaces'][namespace_name]['vector_count'])
|
126 |
+
# print(index_info['total_vector_count'])
|
127 |
+
# else:
|
128 |
+
# print("Index information is not available.")
|
129 |
+
# n_texts = index_info['namespaces'][namespace_name]['vector_count']
|
130 |
+
n_texts = index_info['total_vector_count']
|
131 |
else:
|
132 |
raise ValueError('''Cannot find the specified Pinecone index.
|
133 |
Create one in pinecone.io or using, e.g.,
|
|
|
146 |
result = CRqa({"question": query, "chat_history": chat_history})
|
147 |
return result['answer'], result['source_documents']
|
148 |
|
149 |
+
@st.cache_resource()
|
150 |
+
def use_local_llm(r_llm):
|
151 |
+
from langchain.llms import LlamaCpp
|
152 |
+
from langchain.callbacks.manager import CallbackManager
|
153 |
+
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
154 |
+
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
|
155 |
+
if r_llm == gpt_local_mistral:
|
156 |
+
gpt_local = 'openhermes-2-mistral-7b.Q8_0.gguf'
|
157 |
+
else:
|
158 |
+
gpt_local = 'llama-2-13b-chat.Q8_0.gguf'
|
159 |
+
llm = LlamaCpp(
|
160 |
+
model_path='~//models//'+gpt_local,
|
161 |
+
temperature=0.0,
|
162 |
+
n_batch=300,
|
163 |
+
n_ctx=4000,
|
164 |
+
max_tokens=2000,
|
165 |
+
n_gpu_layers=10,
|
166 |
+
n_threads=12,
|
167 |
+
top_p=1,
|
168 |
+
repeat_penalty=1.15,
|
169 |
+
verbose=False,
|
170 |
+
callback_manager=callback_manager,
|
171 |
+
streaming=True,
|
172 |
+
# verbose=True, # Verbose is required to pass to the callback manager
|
173 |
+
)
|
174 |
+
return llm
|
175 |
+
|
176 |
+
|
177 |
+
def setup_prompt():
|
178 |
+
|
179 |
+
template = """Answer the question in your own words as truthfully as possible from the context given to you.
|
180 |
+
Supply sufficient information, evidence, reasoning, source from the context, etc., to justify your answer with details and logic.
|
181 |
+
Think step by step and do not jump to conclusion during your reasoning at the beginning.
|
182 |
+
Sometimes user's question may appear to be directly related to the context but may still be indirectly related,
|
183 |
+
so try your best to understand the question based on the context and chat history.
|
184 |
+
If questions are asked where there is no relevant context available,
|
185 |
+
respond using out-of-context knowledge with
|
186 |
+
"This question does not seem to be relevant to the documents. I am trying to explore knowledge outside the context."
|
187 |
+
|
188 |
+
Context: {context}
|
189 |
+
|
190 |
+
{chat_history}
|
191 |
+
User: {question}
|
192 |
+
Bot:"""
|
193 |
+
|
194 |
+
prompt = PromptTemplate(
|
195 |
+
input_variables=["context", "chat_history", "question"], template=template
|
196 |
+
)
|
197 |
+
return prompt
|
198 |
|
199 |
def setup_em_llm(OPENAI_API_KEY, temperature, r_llm):
|
200 |
+
if r_llm == gpt3p5 or r_llm == gpt4:
|
201 |
+
# Set up OpenAI embeddings
|
202 |
+
embeddings = OpenAIEmbeddings(openai_api_key=OPENAI_API_KEY)
|
203 |
+
# Use Open AI LLM with gpt-3.5-turbo or gpt-4.
|
204 |
+
# Set the temperature to be 0 if you do not want it to make up things
|
205 |
+
llm = ChatOpenAI(temperature=temperature, model_name=r_llm, streaming=True,
|
206 |
+
openai_api_key=OPENAI_API_KEY)
|
207 |
+
else:
|
208 |
+
#em_model_name = 'hkunlp/instructor-xl'
|
209 |
+
em_model_name='sentence-transformers/all-mpnet-base-v2'
|
210 |
+
embeddings = HuggingFaceEmbeddings(model_name=em_model_name)
|
211 |
+
llm = use_local_llm(r_llm)
|
212 |
return embeddings, llm
|
213 |
|
214 |
|
|
|
235 |
latest_chats = []
|
236 |
reply = ''
|
237 |
source = ''
|
238 |
+
LLMs = [gpt3p5, gpt4, gpt_local_llama, gpt_local_mistral]
|
239 |
# Get user input of whether to use Pinecone or not
|
240 |
col1, col2, col3 = st.columns([1, 1, 1])
|
241 |
# create the radio buttons and text input fields
|
242 |
with col1:
|
243 |
+
r_llm = st.multiselect('LLM:', LLMs, gpt3p5)
|
244 |
+
if not r_llm:
|
245 |
+
r_llm = gpt3p5
|
246 |
+
else:
|
247 |
+
r_llm = r_llm[0]
|
248 |
+
if r_llm == gpt3p5 or r_llm == gpt4:
|
249 |
+
use_openai = True
|
250 |
+
else:
|
251 |
+
use_openai = False
|
252 |
+
r_pinecone = st.radio('Vector store:', ('Pinecone (online)', 'Chroma (local)'))
|
253 |
r_ingest = st.radio(
|
254 |
'Ingest file(s)?', ('Yes', 'No'))
|
255 |
+
if r_pinecone == 'Pinecone (online)':
|
256 |
+
use_pinecone = True
|
257 |
+
else:
|
258 |
+
use_pinecone = False
|
259 |
with col2:
|
|
|
|
|
260 |
temperature = st.slider('Temperature', 0.0, 1.0, 0.1)
|
261 |
k_sources = st.slider('# source(s) to print out', 0, 20, 2)
|
262 |
+
if use_openai == True:
|
263 |
+
OPENAI_API_KEY = st.text_input(
|
264 |
+
"OpenAI API key:", type="password")
|
265 |
+
else:
|
266 |
+
OPENAI_API_KEY = ''
|
267 |
+
if use_pinecone == True:
|
268 |
+
st.write('Local GPT model (and local embedding model) is selected. Online vector store is selected.')
|
|
|
|
|
|
|
|
|
|
|
269 |
else:
|
270 |
+
st.write('Local GPT model (and local embedding model) and local vector store are selected. All info remains local.')
|
271 |
+
embeddings, llm = setup_em_llm(OPENAI_API_KEY, temperature, r_llm)
|
272 |
+
with col3:
|
273 |
+
if use_pinecone == True:
|
274 |
+
PINECONE_API_KEY = st.text_input(
|
275 |
+
"Pinecone API key:", type="password")
|
276 |
+
PINECONE_API_ENV = st.text_input(
|
277 |
+
"Pinecone API env:", type="password")
|
278 |
+
pinecone_index_name = st.text_input('Pinecone index:')
|
279 |
+
pinecone.init(api_key=PINECONE_API_KEY,
|
280 |
+
environment=PINECONE_API_ENV)
|
281 |
+
else:
|
282 |
+
chroma_collection_name = st.text_input(
|
283 |
+
'''Chroma collection name of 3-63 characters:''')
|
284 |
+
persist_directory = "./vectorstore"
|
285 |
|
286 |
if pinecone_index_name or chroma_collection_name:
|
287 |
session_name = pinecone_index_name + chroma_collection_name
|
|
|
304 |
# number of sources (split-documents when ingesting files); default is 4
|
305 |
k = min([20, n_texts])
|
306 |
retriever = setup_retriever(docsearch, k)
|
307 |
+
|
308 |
+
#prompt = setup_prompt()
|
309 |
+
|
310 |
+
memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True, output_key='answer')
|
311 |
+
|
312 |
CRqa = ConversationalRetrievalChain.from_llm(
|
313 |
+
llm,
|
314 |
+
chain_type="stuff",
|
315 |
+
retriever=retriever,
|
316 |
+
memory=memory,
|
317 |
+
return_source_documents=True,
|
318 |
+
#combine_docs_chain_kwargs={'prompt': prompt},
|
319 |
+
)
|
320 |
|
321 |
st.title(':blue[Chatbot]')
|
322 |
# Get user input
|
|
|
334 |
chat_history = [(user, bot)
|
335 |
for user, bot in chat_history]
|
336 |
reply, source = get_response(query, chat_history, CRqa)
|
337 |
+
|
338 |
# Update the chat history with the user input and system response
|
339 |
chat_history.append(('User', query))
|
340 |
chat_history.append(('Bot', reply))
|