Spaces:
Runtime error
Runtime error
File size: 9,287 Bytes
90094f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
# Import required libraries
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.document_loaders import (
UnstructuredWordDocumentLoader,
PyMuPDFLoader,
UnstructuredFileLoader,
)
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.chat_models import ChatOpenAI
from langchain.vectorstores import Pinecone
from langchain.chains.qa_with_sources import load_qa_with_sources_chain
from langchain.retrievers.self_query.base import SelfQueryRetriever
from langchain.chains.query_constructor.base import AttributeInfo
import os
import langchain
import pinecone
import streamlit as st
import shutil
import json
import re
OPENAI_API_KEY = ''
PINECONE_API_KEY = ''
PINECONE_API_ENV = ''
langchain.verbose = False
@st.cache_data()
def init():
pinecone_index_name = ''
pinecone_namespace = ''
docsearch_ready = False
directory_name = 'tmp_docs'
return pinecone_index_name, pinecone_namespace, docsearch_ready, directory_name
@st.cache_data()
def save_file(files):
# Remove existing files in the directory
if os.path.exists(directory_name):
for filename in os.listdir(directory_name):
file_path = os.path.join(directory_name, filename)
try:
if os.path.isfile(file_path):
os.remove(file_path)
except Exception as e:
print(f"Error: {e}")
# Save the new file with original filename
if files is not None:
for file in files:
file_name = file.name
file_path = os.path.join(directory_name, file_name)
with open(file_path, 'wb') as f:
shutil.copyfileobj(file, f)
def load_files():
all_texts = []
n_files = 0
n_char = 0
n_texts = 0
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=400, chunk_overlap=50
)
for filename in os.listdir(directory_name):
file = os.path.join(directory_name, filename)
if os.path.isfile(file):
if file.endswith(".docx"):
loader = UnstructuredWordDocumentLoader(file)
elif file.endswith(".pdf"):
loader = PyMuPDFLoader(file)
else: # assume a pure text format and attempt to load it
loader = UnstructuredFileLoader(file)
data = loader.load()
metadata = data[0].metadata
fn = os.path.basename(metadata['source'])
author = os.path.splitext(fn)[0]
data[0].metadata['author'] = author
texts = text_splitter.split_documents(data)
n_files += 1
n_char += len(data[0].page_content)
n_texts += len(texts)
all_texts.extend(texts)
st.write(
f"Loaded {n_files} file(s) with {n_char} characters, and split into {n_texts} split-documents."
)
return all_texts, n_texts
@st.cache_resource()
def ingest(_all_texts, _embeddings, pinecone_index_name, pinecone_namespace):
docsearch = Pinecone.from_documents(
_all_texts, _embeddings, index_name=pinecone_index_name, namespace=pinecone_namespace)
return docsearch
def setup_retriever(docsearch, k, llm):
metadata_field_info = [
AttributeInfo(
name="author",
description="The author of the document/text/piece of context",
type="string or list[string]",
)
]
document_content_description = "Views/opions/proposals suggested by the author on one or more discussion points."
retriever = SelfQueryRetriever.from_llm(
llm, docsearch, document_content_description, metadata_field_info, verbose=True)
return retriever
def setup_docsearch(pinecone_index_name, pinecone_namespace, embeddings):
docsearch = []
n_texts = 0
# Load the pre-created Pinecone index.
# The index which has already be stored in pinecone.io as long-term memory
if pinecone_index_name in pinecone.list_indexes():
docsearch = Pinecone.from_existing_index(
index_name=pinecone_index_name, embedding=embeddings, text_key='text', namespace=pinecone_namespace)
index_client = pinecone.Index(pinecone_index_name)
# Get the index information
index_info = index_client.describe_index_stats()
n_texts = index_info['namespaces'][pinecone_namespace]['vector_count']
else:
raise ValueError('''Cannot find the specified Pinecone index.
Create one in pinecone.io or using, e.g.,
pinecone.create_index(
name=index_name, dimension=1536, metric="cosine", shards=1)''')
return docsearch, n_texts
def get_response(query, chat_history, CRqa):
result = CRqa({"question": query, "chat_history": chat_history})
return result['answer'], result['source_documents']
def setup_em_llm(OPENAI_API_KEY, temperature):
# Set up OpenAI embeddings
embeddings = OpenAIEmbeddings(openai_api_key=OPENAI_API_KEY)
# Use Open AI LLM with gpt-3.5-turbo.
# Set the temperature to be 0 if you do not want it to make up things
llm = ChatOpenAI(temperature=temperature, model_name="gpt-3.5-turbo", streaming=True,
openai_api_key=OPENAI_API_KEY)
return embeddings, llm
def load_chat_history(CHAT_HISTORY_FILENAME):
try:
with open(CHAT_HISTORY_FILENAME, 'r') as f:
chat_history = json.load(f)
except (FileNotFoundError, json.JSONDecodeError):
chat_history = []
return chat_history
def save_chat_history(chat_history, CHAT_HISTORY_FILENAME):
with open(CHAT_HISTORY_FILENAME, 'w') as f:
json.dump(chat_history, f)
pinecone_index_name, pinecone_namespace, docsearch_ready, directory_name = init()
def main(pinecone_index_name, pinecone_namespace, docsearch_ready):
docsearch_ready = False
chat_history = []
# Get user input of whether to use Pinecone or not
col1, col2, col3 = st.columns([1, 1, 1])
# create the radio buttons and text input fields
with col1:
r_ingest = st.radio(
'Ingest file(s)?', ('Yes', 'No'))
OPENAI_API_KEY = st.text_input(
"OpenAI API key:", type="password")
with col2:
PINECONE_API_KEY = st.text_input(
"Pinecone API key:", type="password")
PINECONE_API_ENV = st.text_input(
"Pinecone API env:", type="password")
pinecone_index_name = st.text_input('Pinecone index:')
pinecone.init(api_key=PINECONE_API_KEY,
environment=PINECONE_API_ENV)
with col3:
pinecone_namespace = st.text_input('Pinecone namespace:')
temperature = st.slider('Temperature', 0.0, 1.0, 0.1)
k_sources = st.slider('# source(s) to print out', 0, 20, 2)
if pinecone_index_name:
session_name = pinecone_index_name
embeddings, llm = setup_em_llm(OPENAI_API_KEY, temperature)
if r_ingest.lower() == 'yes':
files = st.file_uploader(
'Upload Files', accept_multiple_files=True)
if files:
save_file(files)
all_texts, n_texts = load_files()
docsearch = ingest(all_texts, embeddings,
pinecone_index_name, pinecone_namespace)
docsearch_ready = True
else:
st.write(
'No data is to be ingested. Make sure the Pinecone index you provided contains data.')
docsearch, n_texts = setup_docsearch(pinecone_index_name, pinecone_namespace,
embeddings)
docsearch_ready = True
if docsearch_ready:
# number of sources (split-documents when ingesting files); default is 4
k = min([20, n_texts])
retriever = setup_retriever(docsearch, k, llm)
CRqa = load_qa_with_sources_chain(llm, chain_type="stuff")
st.title('Chatbot')
# Get user input
query = st.text_area('Enter your question:', height=10,
placeholder='Summarize the context.')
if query:
# Generate a reply based on the user input and chat history
CHAT_HISTORY_FILENAME = f"chat_history/{session_name}_chat_hist.json"
chat_history = load_chat_history(CHAT_HISTORY_FILENAME)
chat_history = [(user, bot)
for user, bot in chat_history]
docs = retriever.get_relevant_documents(query)
if not docs:
docs = docsearch.similarity_search(query)
result = CRqa.run(input_documents=docs, question=query)
reply = re.match(r'(.+?)\.\s*SOURCES:', result).group(1)
source = re.search(r'SOURCES:\s*(.+)', result).group(1)
# Update the chat history with the user input and system response
chat_history.append(('User', query))
chat_history.append(('Bot', reply))
save_chat_history(chat_history, CHAT_HISTORY_FILENAME)
latest_chats = chat_history[-4:]
chat_history_str = '\n'.join(
[f'{x[0]}: {x[1]}' for x in latest_chats])
st.text_area('Chat record:', value=chat_history_str, height=250)
if __name__ == '__main__':
main(pinecone_index_name, pinecone_namespace,
docsearch_ready)
|