Spaces:
Running
Running
import os | |
import gradio as gr | |
from sqlalchemy import text | |
from smolagents import tool, CodeAgent, HfApiModel | |
import spaces | |
# Import the persistent database | |
from database import engine, receipts | |
def sql_engine(query: str) -> str: | |
""" | |
Executes an SQL query on the 'receipts' table and returns formatted results. | |
Args: | |
query: The SQL query to execute. | |
Returns: | |
Query result as a formatted string. | |
""" | |
try: | |
with engine.connect() as con: | |
rows = con.execute(text(query)).fetchall() | |
if not rows: | |
return "No results found." | |
# Convert query results into a clean, readable format | |
return "\n".join([", ".join(map(str, row)) for row in rows]) | |
except Exception as e: | |
return f"Error: {str(e)}" | |
def query_sql(user_query: str) -> str: | |
""" | |
Converts natural language input to an SQL query using CodeAgent | |
and returns the execution results. | |
Args: | |
user_query: The user's request in natural language. | |
Returns: | |
The query result from the database as a formatted string. | |
""" | |
# Provide the AI with the correct schema and strict instructions | |
schema_info = ( | |
"The database has a table named 'receipts' with the following schema:\n" | |
"- receipt_id (INTEGER, primary key)\n" | |
"- customer_name (VARCHAR(16))\n" | |
"- price (FLOAT)\n" | |
"- tip (FLOAT)\n" | |
"Generate a valid SQL SELECT query using ONLY these column names.\n" | |
"DO NOT explain your reasoning, and DO NOT return anything other than the SQL query itself." | |
) | |
# Generate SQL query using the provided schema | |
generated_sql = agent.run(f"{schema_info} Convert this request into SQL: {user_query}") | |
# Log the generated SQL for debugging | |
print(f"Generated SQL: {generated_sql}") | |
# Ensure we only execute valid SELECT queries | |
# if not generated_sql.strip().lower().startswith(("select", "show", "pragma")): | |
# return "Error: Only SELECT queries are allowed." | |
# Execute the SQL query and return the result | |
result = sql_engine(generated_sql) | |
# Log the SQL query result | |
print(f"SQL Query Result: {result}") | |
return result # Return only the final query result, NOT the generated SQL | |
def handle_query(user_input: str) -> str: | |
""" | |
Calls query_sql, captures the output, and directly returns it to the UI. | |
Args: | |
user_input: The user's natural language question. | |
Returns: | |
The SQL query result as a plain string to be displayed in the UI. | |
""" | |
return query_sql(user_input) # Directly return the processed result | |
# Initialize CodeAgent to generate SQL queries from natural language | |
agent = CodeAgent( | |
tools=[sql_engine], # Ensure sql_engine is properly registered | |
model=HfApiModel(model_id="Qwen/Qwen2.5-Coder-32B-Instruct"), | |
) | |
# Define Gradio interface using handle_query instead of query_sql | |
demo = gr.Interface( | |
fn=handle_query, # Call handle_query to return the final SQL output | |
inputs=gr.Textbox(label="Enter your query in plain English"), | |
outputs=gr.Textbox(label="Query Result"), | |
title="Natural Language to SQL Executor", | |
description="Enter a plain English request, and the AI will generate an SQL query and return the results.", | |
flagging_mode="never", | |
) | |
if __name__ == "__main__": | |
demo.launch(server_name="0.0.0.0", server_port=7860, share=True) | |