Update app.py
Browse files
app.py
CHANGED
@@ -450,7 +450,7 @@ def get_vc(sid):
|
|
450 |
cpt = None
|
451 |
return {"visible": False, "__type__": "update"}
|
452 |
person = "%s/%s" % (weight_root, sid)
|
453 |
-
print("
|
454 |
cpt = torch.load(person, map_location="cpu")
|
455 |
tgt_sr = cpt["config"][-1]
|
456 |
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk
|
@@ -1582,6 +1582,7 @@ with gr.Blocks(theme=gr.themes.Base(), title='Mangio-RVC-Web 💻') as app:
|
|
1582 |
label="Mangio-Crepe Hop Length. Более высокие числа уменьшат вероятность экстремального изменения высоты тона, но более низкие числа увеличат точность. 64-192 - хороший диапазон для экспериментов.",
|
1583 |
value=120,
|
1584 |
interactive=True,
|
|
|
1585 |
)
|
1586 |
f0method0.change(fn=whethercrepeornah, inputs=[f0method0], outputs=[crepe_hop_length])
|
1587 |
filter_radius0 = gr.Slider(
|
@@ -1616,7 +1617,125 @@ with gr.Blocks(theme=gr.themes.Base(), title='Mangio-RVC-Web 💻') as app:
|
|
1616 |
step=0.01,
|
1617 |
interactive=True,
|
1618 |
)
|
|
|
1619 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1620 |
with gr.TabItem("Загрузить модель"):
|
1621 |
with gr.Row():
|
1622 |
url=gr.Textbox(label="Введите URL-адрес модели:")
|
@@ -1626,6 +1745,253 @@ with gr.Blocks(theme=gr.themes.Base(), title='Mangio-RVC-Web 💻') as app:
|
|
1626 |
with gr.Row():
|
1627 |
status_bar=gr.Textbox(label="")
|
1628 |
download_button.click(fn=download_from_url, inputs=[url, model], outputs=[status_bar])
|
1629 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1630 |
app.queue(concurrency_count=511, max_size=1022).launch(share=False, quiet=True)
|
1631 |
#endregion
|
|
|
450 |
cpt = None
|
451 |
return {"visible": False, "__type__": "update"}
|
452 |
person = "%s/%s" % (weight_root, sid)
|
453 |
+
print("loading %s" % person)
|
454 |
cpt = torch.load(person, map_location="cpu")
|
455 |
tgt_sr = cpt["config"][-1]
|
456 |
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk
|
|
|
1582 |
label="Mangio-Crepe Hop Length. Более высокие числа уменьшат вероятность экстремального изменения высоты тона, но более низкие числа увеличат точность. 64-192 - хороший диапазон для экспериментов.",
|
1583 |
value=120,
|
1584 |
interactive=True,
|
1585 |
+
visible=False
|
1586 |
)
|
1587 |
f0method0.change(fn=whethercrepeornah, inputs=[f0method0], outputs=[crepe_hop_length])
|
1588 |
filter_radius0 = gr.Slider(
|
|
|
1617 |
step=0.01,
|
1618 |
interactive=True,
|
1619 |
)
|
1620 |
+
|
1621 |
|
1622 |
+
with gr.Accordion("Batch Conversion",open=False):
|
1623 |
+
with gr.Row():
|
1624 |
+
with gr.Column():
|
1625 |
+
vc_transform1 = gr.Number(
|
1626 |
+
label=i18n("变调(整数, 半音数量, 升八度12降八度-12)"), value=0
|
1627 |
+
)
|
1628 |
+
opt_input = gr.Textbox(label=i18n("指定输出文件夹"), value="opt")
|
1629 |
+
f0method1 = gr.Radio(
|
1630 |
+
label=i18n(
|
1631 |
+
"选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU"
|
1632 |
+
),
|
1633 |
+
choices=["pm", "harvest", "crepe", "rmvpe"],
|
1634 |
+
value="rmvpe",
|
1635 |
+
interactive=True,
|
1636 |
+
)
|
1637 |
+
filter_radius1 = gr.Slider(
|
1638 |
+
minimum=0,
|
1639 |
+
maximum=7,
|
1640 |
+
label=i18n(">=3则使用对harvest音高识别的结果使用中值滤波,数值为滤波半径,使用可以削弱哑音"),
|
1641 |
+
value=3,
|
1642 |
+
step=1,
|
1643 |
+
interactive=True,
|
1644 |
+
)
|
1645 |
+
with gr.Column():
|
1646 |
+
file_index3 = gr.Textbox(
|
1647 |
+
label=i18n("特征检索库文件路径,为空则使用下拉的选择结果"),
|
1648 |
+
value="",
|
1649 |
+
interactive=True,
|
1650 |
+
)
|
1651 |
+
file_index4 = gr.Dropdown(
|
1652 |
+
label=i18n("自动检测index路径,下拉式选择(dropdown)"),
|
1653 |
+
choices=sorted(index_paths),
|
1654 |
+
interactive=True,
|
1655 |
+
)
|
1656 |
+
refresh_button.click(
|
1657 |
+
fn=lambda: change_choices()[1],
|
1658 |
+
inputs=[],
|
1659 |
+
outputs=file_index4,
|
1660 |
+
)
|
1661 |
+
# file_big_npy2 = gr.Textbox(
|
1662 |
+
# label=i18n("特征文件路径"),
|
1663 |
+
# value="E:\\codes\\py39\\vits_vc_gpu_train\\logs\\mi-test-1key\\total_fea.npy",
|
1664 |
+
# interactive=True,
|
1665 |
+
# )
|
1666 |
+
index_rate2 = gr.Slider(
|
1667 |
+
minimum=0,
|
1668 |
+
maximum=1,
|
1669 |
+
label=i18n("检索特征占比"),
|
1670 |
+
value=1,
|
1671 |
+
interactive=True,
|
1672 |
+
)
|
1673 |
+
with gr.Column():
|
1674 |
+
resample_sr1 = gr.Slider(
|
1675 |
+
minimum=0,
|
1676 |
+
maximum=48000,
|
1677 |
+
label=i18n("后处理重采样至最终采样率,0为不进行重采样"),
|
1678 |
+
value=0,
|
1679 |
+
step=1,
|
1680 |
+
interactive=True,
|
1681 |
+
)
|
1682 |
+
rms_mix_rate1 = gr.Slider(
|
1683 |
+
minimum=0,
|
1684 |
+
maximum=1,
|
1685 |
+
label=i18n("输入源音量包络替换输出音量包络融合比例,越靠近1越使用输出包络"),
|
1686 |
+
value=1,
|
1687 |
+
interactive=True,
|
1688 |
+
)
|
1689 |
+
protect1 = gr.Slider(
|
1690 |
+
minimum=0,
|
1691 |
+
maximum=0.5,
|
1692 |
+
label=i18n(
|
1693 |
+
"保护清辅音和呼吸声,防止电音撕裂等artifact,拉满0.5不开启,调低加大保护力度但可能降低索引效果"
|
1694 |
+
),
|
1695 |
+
value=0.33,
|
1696 |
+
step=0.01,
|
1697 |
+
interactive=True,
|
1698 |
+
)
|
1699 |
+
with gr.Column():
|
1700 |
+
dir_input = gr.Textbox(
|
1701 |
+
label=i18n("输入待处理音频文件夹路径(去文件管理器地址栏拷就行了)"),
|
1702 |
+
value="E:\codes\py39\\test-20230416b\\todo-songs",
|
1703 |
+
)
|
1704 |
+
inputs = gr.File(
|
1705 |
+
file_count="multiple", label=i18n("也可批量输入音频文件, 二选一, 优先读文件夹")
|
1706 |
+
)
|
1707 |
+
with gr.Row():
|
1708 |
+
format1 = gr.Radio(
|
1709 |
+
label=i18n("导出文件格式"),
|
1710 |
+
choices=["wav", "flac", "mp3", "m4a"],
|
1711 |
+
value="flac",
|
1712 |
+
interactive=True,
|
1713 |
+
)
|
1714 |
+
but1 = gr.Button(i18n("转换"), variant="primary")
|
1715 |
+
vc_output3 = gr.Textbox(label=i18n("输出信息"))
|
1716 |
+
but1.click(
|
1717 |
+
vc_multi,
|
1718 |
+
[
|
1719 |
+
spk_item,
|
1720 |
+
dir_input,
|
1721 |
+
opt_input,
|
1722 |
+
inputs,
|
1723 |
+
vc_transform1,
|
1724 |
+
f0method1,
|
1725 |
+
file_index3,
|
1726 |
+
file_index4,
|
1727 |
+
# file_big_npy2,
|
1728 |
+
index_rate2,
|
1729 |
+
filter_radius1,
|
1730 |
+
resample_sr1,
|
1731 |
+
rms_mix_rate1,
|
1732 |
+
protect1,
|
1733 |
+
format1,
|
1734 |
+
crepe_hop_length,
|
1735 |
+
],
|
1736 |
+
[vc_output3],
|
1737 |
+
)
|
1738 |
+
but1.click(fn=lambda: easy_uploader.clear())
|
1739 |
with gr.TabItem("Загрузить модель"):
|
1740 |
with gr.Row():
|
1741 |
url=gr.Textbox(label="Введите URL-адрес модели:")
|
|
|
1745 |
with gr.Row():
|
1746 |
status_bar=gr.Textbox(label="")
|
1747 |
download_button.click(fn=download_from_url, inputs=[url, model], outputs=[status_bar])
|
1748 |
+
|
1749 |
+
def has_two_files_in_pretrained_folder():
|
1750 |
+
pretrained_folder = "./pretrained/"
|
1751 |
+
if not os.path.exists(pretrained_folder):
|
1752 |
+
return False
|
1753 |
+
|
1754 |
+
files_in_folder = os.listdir(pretrained_folder)
|
1755 |
+
num_files = len(files_in_folder)
|
1756 |
+
return num_files >= 2
|
1757 |
+
|
1758 |
+
if has_two_files_in_pretrained_folder():
|
1759 |
+
print("Pretrained weights are downloaded. Training tab enabled!\n-------------------------------")
|
1760 |
+
with gr.TabItem("Train", visible=False):
|
1761 |
+
with gr.Row():
|
1762 |
+
with gr.Column():
|
1763 |
+
exp_dir1 = gr.Textbox(label="Voice Name:", value="My-Voice")
|
1764 |
+
sr2 = gr.Radio(
|
1765 |
+
label=i18n("目标采样率"),
|
1766 |
+
choices=["40k", "48k"],
|
1767 |
+
value="40k",
|
1768 |
+
interactive=True,
|
1769 |
+
visible=False
|
1770 |
+
)
|
1771 |
+
if_f0_3 = gr.Radio(
|
1772 |
+
label=i18n("模型是否带音高指导(唱歌一定要, 语音可以不要)"),
|
1773 |
+
choices=[True, False],
|
1774 |
+
value=True,
|
1775 |
+
interactive=True,
|
1776 |
+
visible=False
|
1777 |
+
)
|
1778 |
+
version19 = gr.Radio(
|
1779 |
+
label="RVC version",
|
1780 |
+
choices=["v1", "v2"],
|
1781 |
+
value="v2",
|
1782 |
+
interactive=True,
|
1783 |
+
visible=False,
|
1784 |
+
)
|
1785 |
+
np7 = gr.Slider(
|
1786 |
+
minimum=0,
|
1787 |
+
maximum=config.n_cpu,
|
1788 |
+
step=1,
|
1789 |
+
label="# of CPUs for data processing (Leave as it is)",
|
1790 |
+
value=config.n_cpu,
|
1791 |
+
interactive=True,
|
1792 |
+
visible=True
|
1793 |
+
)
|
1794 |
+
trainset_dir4 = gr.Textbox(label="Path to your dataset (audios, not zip):", value="./dataset")
|
1795 |
+
easy_uploader = gr.Files(label='OR Drop your audios here. They will be uploaded in your dataset path above.',file_types=['audio'])
|
1796 |
+
but1 = gr.Button("1. Process The Dataset", variant="primary")
|
1797 |
+
info1 = gr.Textbox(label="Status (wait until it says 'end preprocess'):", value="")
|
1798 |
+
easy_uploader.upload(fn=upload_to_dataset, inputs=[easy_uploader, trainset_dir4], outputs=[info1])
|
1799 |
+
but1.click(
|
1800 |
+
preprocess_dataset, [trainset_dir4, exp_dir1, sr2, np7], [info1]
|
1801 |
+
)
|
1802 |
+
with gr.Column():
|
1803 |
+
spk_id5 = gr.Slider(
|
1804 |
+
minimum=0,
|
1805 |
+
maximum=4,
|
1806 |
+
step=1,
|
1807 |
+
label=i18n("请指定说话人id"),
|
1808 |
+
value=0,
|
1809 |
+
interactive=True,
|
1810 |
+
visible=False
|
1811 |
+
)
|
1812 |
+
with gr.Accordion('GPU Settings', open=False, visible=False):
|
1813 |
+
gpus6 = gr.Textbox(
|
1814 |
+
label=i18n("以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2"),
|
1815 |
+
value=gpus,
|
1816 |
+
interactive=True,
|
1817 |
+
visible=False
|
1818 |
+
)
|
1819 |
+
gpu_info9 = gr.Textbox(label=i18n("显卡信息"), value=gpu_info)
|
1820 |
+
f0method8 = gr.Radio(
|
1821 |
+
label=i18n(
|
1822 |
+
"选择音高提取算法:输入歌声可用pm提速,高质量语音但CPU差可用dio提速,harvest质量更好但慢"
|
1823 |
+
),
|
1824 |
+
choices=["harvest","crepe", "mangio-crepe", "rmvpe"], # Fork feature: Crepe on f0 extraction for training.
|
1825 |
+
value="rmvpe",
|
1826 |
+
interactive=True,
|
1827 |
+
)
|
1828 |
+
|
1829 |
+
extraction_crepe_hop_length = gr.Slider(
|
1830 |
+
minimum=1,
|
1831 |
+
maximum=512,
|
1832 |
+
step=1,
|
1833 |
+
label=i18n("crepe_hop_length"),
|
1834 |
+
value=128,
|
1835 |
+
interactive=True,
|
1836 |
+
visible=False,
|
1837 |
+
)
|
1838 |
+
f0method8.change(fn=whethercrepeornah, inputs=[f0method8], outputs=[extraction_crepe_hop_length])
|
1839 |
+
but2 = gr.Button("2. Pitch Extraction", variant="primary")
|
1840 |
+
info2 = gr.Textbox(label="Status(Check the Colab Notebook's cell output):", value="", max_lines=8)
|
1841 |
+
but2.click(
|
1842 |
+
extract_f0_feature,
|
1843 |
+
[gpus6, np7, f0method8, if_f0_3, exp_dir1, version19, extraction_crepe_hop_length],
|
1844 |
+
[info2],
|
1845 |
+
)
|
1846 |
+
with gr.Row():
|
1847 |
+
with gr.Column():
|
1848 |
+
total_epoch11 = gr.Slider(
|
1849 |
+
minimum=1,
|
1850 |
+
maximum=5000,
|
1851 |
+
step=10,
|
1852 |
+
label="Total # of training epochs (IF you choose a value too high, your model will sound horribly overtrained.):",
|
1853 |
+
value=250,
|
1854 |
+
interactive=True,
|
1855 |
+
)
|
1856 |
+
butstop = gr.Button(
|
1857 |
+
"Stop Training",
|
1858 |
+
variant='primary',
|
1859 |
+
visible=False,
|
1860 |
+
)
|
1861 |
+
but3 = gr.Button("3. Train Model", variant="primary", visible=True)
|
1862 |
+
|
1863 |
+
but3.click(fn=stoptraining, inputs=[gr.Number(value=0, visible=False)], outputs=[but3, butstop])
|
1864 |
+
butstop.click(fn=stoptraining, inputs=[gr.Number(value=1, visible=False)], outputs=[butstop, but3])
|
1865 |
+
|
1866 |
+
|
1867 |
+
but4 = gr.Button("4.Train Index", variant="primary")
|
1868 |
+
info3 = gr.Textbox(label="Status(Check the Colab Notebook's cell output):", value="", max_lines=10)
|
1869 |
+
with gr.Accordion("Training Preferences (You can leave these as they are)", open=False):
|
1870 |
+
#gr.Markdown(value=i18n("step3: 填写训练设置, 开始训练模型和索引"))
|
1871 |
+
with gr.Column():
|
1872 |
+
save_epoch10 = gr.Slider(
|
1873 |
+
minimum=1,
|
1874 |
+
maximum=200,
|
1875 |
+
step=1,
|
1876 |
+
label="Backup every X amount of epochs:",
|
1877 |
+
value=10,
|
1878 |
+
interactive=True,
|
1879 |
+
)
|
1880 |
+
batch_size12 = gr.Slider(
|
1881 |
+
minimum=1,
|
1882 |
+
maximum=40,
|
1883 |
+
step=1,
|
1884 |
+
label="Batch Size (LEAVE IT unless you know what you're doing!):",
|
1885 |
+
value=default_batch_size,
|
1886 |
+
interactive=True,
|
1887 |
+
)
|
1888 |
+
if_save_latest13 = gr.Checkbox(
|
1889 |
+
label="Save only the latest '.ckpt' file to save disk space.",
|
1890 |
+
value=True,
|
1891 |
+
interactive=True,
|
1892 |
+
)
|
1893 |
+
if_cache_gpu17 = gr.Checkbox(
|
1894 |
+
label="Cache all training sets to GPU memory. Caching small datasets (less than 10 minutes) can speed up training, but caching large datasets will consume a lot of GPU memory and may not provide much speed improvement.",
|
1895 |
+
value=False,
|
1896 |
+
interactive=True,
|
1897 |
+
)
|
1898 |
+
if_save_every_weights18 = gr.Checkbox(
|
1899 |
+
label="Save a small final model to the 'weights' folder at each save point.",
|
1900 |
+
value=True,
|
1901 |
+
interactive=True,
|
1902 |
+
)
|
1903 |
+
zip_model = gr.Button('5. Download Model')
|
1904 |
+
zipped_model = gr.Files(label='Your Model and Index file can be downloaded here:')
|
1905 |
+
zip_model.click(fn=zip_downloader, inputs=[exp_dir1], outputs=[zipped_model, info3])
|
1906 |
+
with gr.Group():
|
1907 |
+
with gr.Accordion("Base Model Locations:", open=False, visible=False):
|
1908 |
+
pretrained_G14 = gr.Textbox(
|
1909 |
+
label=i18n("加载预训练底模G路径"),
|
1910 |
+
value="pretrained_v2/f0G40k.pth",
|
1911 |
+
interactive=True,
|
1912 |
+
)
|
1913 |
+
pretrained_D15 = gr.Textbox(
|
1914 |
+
label=i18n("加载预训练底模D路径"),
|
1915 |
+
value="pretrained_v2/f0D40k.pth",
|
1916 |
+
interactive=True,
|
1917 |
+
)
|
1918 |
+
gpus16 = gr.Textbox(
|
1919 |
+
label=i18n("以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2"),
|
1920 |
+
value=gpus,
|
1921 |
+
interactive=True,
|
1922 |
+
)
|
1923 |
+
sr2.change(
|
1924 |
+
change_sr2,
|
1925 |
+
[sr2, if_f0_3, version19],
|
1926 |
+
[pretrained_G14, pretrained_D15, version19],
|
1927 |
+
)
|
1928 |
+
version19.change(
|
1929 |
+
change_version19,
|
1930 |
+
[sr2, if_f0_3, version19],
|
1931 |
+
[pretrained_G14, pretrained_D15],
|
1932 |
+
)
|
1933 |
+
if_f0_3.change(
|
1934 |
+
change_f0,
|
1935 |
+
[if_f0_3, sr2, version19],
|
1936 |
+
[f0method8, pretrained_G14, pretrained_D15],
|
1937 |
+
)
|
1938 |
+
but5 = gr.Button(i18n("一键训练"), variant="primary", visible=False)
|
1939 |
+
but3.click(
|
1940 |
+
click_train,
|
1941 |
+
[
|
1942 |
+
exp_dir1,
|
1943 |
+
sr2,
|
1944 |
+
if_f0_3,
|
1945 |
+
spk_id5,
|
1946 |
+
save_epoch10,
|
1947 |
+
total_epoch11,
|
1948 |
+
batch_size12,
|
1949 |
+
if_save_latest13,
|
1950 |
+
pretrained_G14,
|
1951 |
+
pretrained_D15,
|
1952 |
+
gpus16,
|
1953 |
+
if_cache_gpu17,
|
1954 |
+
if_save_every_weights18,
|
1955 |
+
version19,
|
1956 |
+
],
|
1957 |
+
[
|
1958 |
+
info3,
|
1959 |
+
butstop,
|
1960 |
+
but3,
|
1961 |
+
],
|
1962 |
+
)
|
1963 |
+
but4.click(train_index, [exp_dir1, version19], info3)
|
1964 |
+
but5.click(
|
1965 |
+
train1key,
|
1966 |
+
[
|
1967 |
+
exp_dir1,
|
1968 |
+
sr2,
|
1969 |
+
if_f0_3,
|
1970 |
+
trainset_dir4,
|
1971 |
+
spk_id5,
|
1972 |
+
np7,
|
1973 |
+
f0method8,
|
1974 |
+
save_epoch10,
|
1975 |
+
total_epoch11,
|
1976 |
+
batch_size12,
|
1977 |
+
if_save_latest13,
|
1978 |
+
pretrained_G14,
|
1979 |
+
pretrained_D15,
|
1980 |
+
gpus16,
|
1981 |
+
if_cache_gpu17,
|
1982 |
+
if_save_every_weights18,
|
1983 |
+
version19,
|
1984 |
+
extraction_crepe_hop_length
|
1985 |
+
],
|
1986 |
+
info3,
|
1987 |
+
)
|
1988 |
+
|
1989 |
+
else:
|
1990 |
+
print(
|
1991 |
+
"Pretrained weights not downloaded. Disabling training tab.\n"
|
1992 |
+
"Wondering how to train a voice? Visit here for the RVC model training guide: https://t.ly/RVC_Training_Guide\n"
|
1993 |
+
"-------------------------------\n"
|
1994 |
+
)
|
1995 |
+
|
1996 |
app.queue(concurrency_count=511, max_size=1022).launch(share=False, quiet=True)
|
1997 |
#endregion
|