File size: 16,135 Bytes
c33448f
 
 
 
 
 
 
 
 
14bc302
 
 
 
 
 
 
 
 
c33448f
 
 
 
 
b6dea97
c33448f
 
b6dea97
c33448f
 
 
 
c49d60b
6ce8c6e
14bc302
b6dea97
c33448f
87119af
14bc302
c33448f
 
 
 
 
 
 
b6dea97
 
 
c33448f
 
 
 
 
 
 
14bc302
c33448f
14bc302
 
 
 
 
 
 
 
 
 
 
 
c33448f
 
 
 
ecdb99d
c33448f
 
b6dea97
 
c33448f
 
14bc302
c33448f
 
 
 
 
 
 
b6dea97
 
 
 
c33448f
b6dea97
 
c33448f
 
 
b6dea97
 
c33448f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14bc302
c33448f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14bc302
c33448f
 
 
14bc302
c33448f
14bc302
 
 
 
 
 
 
 
 
c33448f
fb18007
c33448f
14bc302
 
 
 
 
 
 
 
 
 
 
 
c33448f
 
 
14bc302
 
 
 
 
 
 
 
c33448f
14bc302
 
 
 
 
 
 
 
c33448f
 
6ce8c6e
14bc302
 
 
 
 
 
 
 
c33448f
 
 
 
 
 
 
 
14bc302
 
c33448f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87119af
14bc302
c33448f
 
87119af
c33448f
 
 
 
14bc302
c33448f
 
 
 
 
 
 
 
 
 
14bc302
c33448f
 
 
 
 
 
 
 
 
 
fb18007
14bc302
c33448f
 
 
 
 
14bc302
c33448f
 
 
 
 
 
 
6ce8c6e
 
 
c49d60b
6ce8c6e
14bc302
6ce8c6e
 
 
 
 
c33448f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14bc302
 
c33448f
14bc302
c33448f
 
 
 
 
14bc302
 
c33448f
 
14bc302
c33448f
 
 
 
 
 
 
14bc302
c33448f
b6dea97
c33448f
 
14bc302
b6dea97
c33448f
b6dea97
 
14bc302
 
 
 
b6dea97
 
 
 
 
 
 
 
 
 
14bc302
c33448f
 
14bc302
 
c33448f
 
14bc302
 
c33448f
 
 
 
 
 
14bc302
c33448f
14bc302
c33448f
14bc302
 
c33448f
 
b6dea97
 
 
 
 
 
14bc302
 
 
c33448f
b6dea97
 
c33448f
 
fb18007
14bc302
 
 
c33448f
 
 
 
 
 
 
 
14bc302
c33448f
 
 
 
 
 
 
 
 
14bc302
 
 
 
c33448f
 
6ce8c6e
14bc302
 
 
 
 
c33448f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
import collections
import logging
import threading
import uuid

import datasets
import gradio as gr
import pandas as pd

import leaderboard
from io_utils import (
  read_column_mapping, 
  write_column_mapping, 
  read_scanners, 
  write_scanners,
)
from run_jobs import save_job_to_pipe
from text_classification import (
    strip_model_id_from_url,
    check_model_task,
    preload_hf_inference_api,
    get_example_prediction,
    get_labels_and_features_from_dataset,
    check_hf_token_validity,
    HuggingFaceInferenceAPIResponse,
)
from utils.wordings import (
    CHECK_CONFIG_OR_SPLIT_RAW,
    CONFIRM_MAPPING_DETAILS_FAIL_RAW,
    MAPPING_STYLED_ERROR_WARNING,
    NOT_TEXT_CLASSIFICATION_MODEL_RAW,
    UNMATCHED_MODEL_DATASET_STYLED_ERROR,
    CHECK_LOG_SECTION_RAW,
    VALIDATED_MODEL_DATASET_STYLED,
    get_dataset_fetch_error_raw,
)
import os
from app_env import HF_WRITE_TOKEN

MAX_LABELS = 40
MAX_FEATURES = 20

ds_dict = None
ds_config = None

logger = logging.getLogger(__file__)


def get_related_datasets_from_leaderboard(model_id):
    records = leaderboard.records
    model_id = strip_model_id_from_url(model_id)
    model_records = records[records["model_id"] == model_id]
    datasets_unique = list(model_records["dataset_id"].unique())

    if len(datasets_unique) == 0:
        return gr.update(choices=[])
    
    return gr.update(choices=datasets_unique)


logger = logging.getLogger(__file__)

def get_dataset_splits(dataset_id, dataset_config):
    try:
        splits = datasets.get_dataset_split_names(dataset_id, dataset_config, trust_remote_code=True)
        return gr.update(choices=splits, value=splits[0], visible=True)
    except Exception as e:
        logger.warn(f"Check your dataset {dataset_id} and config {dataset_config}: {e}")
        return gr.update(visible=False)

def check_dataset(dataset_id):
    logger.info(f"Loading {dataset_id}")
    try:
        configs = datasets.get_dataset_config_names(dataset_id, trust_remote_code=True)
        if len(configs) == 0:
            return (
                gr.update(visible=False),
                gr.update(visible=False),
                ""
            )
        splits = datasets.get_dataset_split_names(dataset_id, configs[0], trust_remote_code=True)
        return (
            gr.update(choices=configs, value=configs[0], visible=True),
            gr.update(choices=splits, value=splits[0], visible=True),
            ""
        )
    except Exception as e:
        logger.warn(f"Check your dataset {dataset_id}: {e}")
        if "doesn't exist" in str(e):
            gr.Warning(get_dataset_fetch_error_raw(e))
        if "forbidden" in str(e).lower(): # GSK-2770
            gr.Warning(get_dataset_fetch_error_raw(e))
        return (
            gr.update(visible=False),
            gr.update(visible=False),
            ""
        )

def empty_column_mapping(uid):
    write_column_mapping(None, uid)

def write_column_mapping_to_config(uid, *labels):
    # TODO: Substitute 'text' with more features for zero-shot
    # we are not using ds features because we only support "text" for now
    all_mappings = read_column_mapping(uid)

    if labels is None:
        return
    all_mappings = export_mappings(all_mappings, "labels", None, labels[:MAX_LABELS])
    all_mappings = export_mappings(
        all_mappings,
        "features",
        ["text"],
        labels[MAX_LABELS : (MAX_LABELS + MAX_FEATURES)],
    )

    write_column_mapping(all_mappings, uid)

def export_mappings(all_mappings, key, subkeys, values):
    if key not in all_mappings.keys():
        all_mappings[key] = dict()
    if subkeys is None:
        subkeys = list(all_mappings[key].keys())

    if not subkeys: 
        logging.debug(f"subkeys is empty for {key}")
        return all_mappings

    for i, subkey in enumerate(subkeys):
        if subkey:
            all_mappings[key][subkey] = values[i % len(values)]
    return all_mappings

def list_labels_and_features_from_dataset(ds_labels, ds_features, model_labels, uid):
    all_mappings = read_column_mapping(uid)
    # For flattened raw datasets with no labels
    # check if there are shared labels between model and dataset
    shared_labels = set(model_labels).intersection(set(ds_labels))
    if shared_labels:
        ds_labels = list(shared_labels)
    if len(ds_labels) > MAX_LABELS:
        ds_labels = ds_labels[:MAX_LABELS]
        gr.Warning(f"Too many labels to display for this spcae. We do not support more than {MAX_LABELS} in this space. You can use cli tool at https://github.com/Giskard-AI/cicd.")

    # sort labels to make sure the order is consistent
    # prediction gives the order based on probability
    ds_labels.sort()
    model_labels.sort()

    lables = [
        gr.Dropdown(
            label=f"{label}",
            choices=model_labels,
            value=model_labels[i % len(model_labels)],
            interactive=True,
            visible=True,
        )
        for i, label in enumerate(ds_labels)
    ]
    lables += [gr.Dropdown(visible=False) for _ in range(MAX_LABELS - len(lables))]
    all_mappings = export_mappings(all_mappings, "labels", ds_labels, model_labels)

    # TODO: Substitute 'text' with more features for zero-shot
    features = [
        gr.Dropdown(
            label=f"{feature}",
            choices=ds_features,
            value=ds_features[0],
            interactive=True,
            visible=True,
        )
        for feature in ["text"]
    ]
    features += [
        gr.Dropdown(visible=False) for _ in range(MAX_FEATURES - len(features))
    ]
    all_mappings = export_mappings(all_mappings, "features", ["text"], ds_features)
    write_column_mapping(all_mappings, uid)

    return lables + features

def precheck_model_ds_enable_example_btn(
    model_id, dataset_id, dataset_config, dataset_split
):  
    model_id = strip_model_id_from_url(model_id)
    model_task = check_model_task(model_id)
    preload_hf_inference_api(model_id)

    if dataset_config is None or dataset_split is None or len(dataset_config) == 0:
        return (
            gr.update(interactive=False), 
            gr.update(visible=False),
            gr.update(visible=False),
            gr.update(visible=False),
            gr.update(visible=False),
            gr.update(visible=False),
        )

    try:
        ds = datasets.load_dataset(dataset_id, dataset_config, trust_remote_code=True)
        df: pd.DataFrame = ds[dataset_split].to_pandas().head(5)
        ds_labels, ds_features, _ = get_labels_and_features_from_dataset(ds[dataset_split])

        if model_task is None or model_task != "text-classification":
          gr.Warning(NOT_TEXT_CLASSIFICATION_MODEL_RAW)
          return (
              gr.update(interactive=False), 
              gr.update(value=df, visible=True),
              gr.update(visible=False),
              gr.update(visible=False),
              gr.update(visible=False),
              gr.update(visible=False),
          )

        if not isinstance(ds_labels, list) or not isinstance(ds_features, list):
            gr.Warning(CHECK_CONFIG_OR_SPLIT_RAW)
            return (
                gr.update(interactive=False), 
                gr.update(value=df, visible=True),
                gr.update(visible=False),
                gr.update(visible=False),
                gr.update(visible=False),
                gr.update(visible=False),
            )

        return (
                gr.update(interactive=True), 
                gr.update(value=df, visible=True),
                gr.update(visible=False),
                gr.update(visible=False),
                gr.update(visible=False),
                gr.update(visible=False),
            )
    except Exception as e:
        # Config or split wrong
        logger.warn(f"Check your dataset {dataset_id} and config {dataset_config} on split {dataset_split}: {e}")
        return (
            gr.update(interactive=False),
            gr.update(visible=False),
            gr.update(visible=False),
            gr.update(visible=False),
            gr.update(visible=False),
            gr.update(visible=False),
        )


def align_columns_and_show_prediction(
    model_id,
    dataset_id,
    dataset_config,
    dataset_split,
    uid,
    profile: gr.OAuthProfile | None,
    oauth_token: gr.OAuthToken | None,
):
    model_id = strip_model_id_from_url(model_id)
    model_task = check_model_task(model_id)
    if model_task is None or model_task != "text-classification":
        gr.Warning(NOT_TEXT_CLASSIFICATION_MODEL_RAW)
        return (
            gr.update(visible=False),
            gr.update(visible=False),
            gr.update(visible=False, open=False),
            gr.update(interactive=False),
            "",
            *[gr.update(visible=False) for _ in range(MAX_LABELS + MAX_FEATURES)],
        )

    dropdown_placement = [
        gr.Dropdown(visible=False) for _ in range(MAX_LABELS + MAX_FEATURES)
    ]
    
    hf_token = os.environ.get(HF_WRITE_TOKEN, default="")

    prediction_input, prediction_response = get_example_prediction(
        model_id, dataset_id, dataset_config, dataset_split, hf_token
    )

    if prediction_input is None or prediction_response is None:
        return (
            gr.update(visible=False),
            gr.update(visible=False),
            gr.update(visible=False),
            gr.update(visible=False, open=False),
            gr.update(interactive=False),
            "",
            *dropdown_placement,
        )

    if isinstance(prediction_response, HuggingFaceInferenceAPIResponse):
        return (
            gr.update(visible=False),
            gr.update(visible=False),
            gr.update(visible=False),
            gr.update(visible=False, open=False),
            gr.update(interactive=False),
            f"Hugging Face Inference API is loading your model. {prediction_response.message}",
            *dropdown_placement,
        )

    model_labels = list(prediction_response.keys())
    
    ds = datasets.load_dataset(dataset_id, dataset_config, split=dataset_split, trust_remote_code=True)
    ds_labels, ds_features, _ = get_labels_and_features_from_dataset(ds)

    # when dataset does not have labels or features
    if not isinstance(ds_labels, list) or not isinstance(ds_features, list):
        gr.Warning(CHECK_CONFIG_OR_SPLIT_RAW)
        return (
            gr.update(visible=False),
            gr.update(visible=False),
            gr.update(visible=False),
            gr.update(visible=False, open=False),
            gr.update(interactive=False),
            "",
            *dropdown_placement,
        )
    
    if len(ds_labels) != len(model_labels):
        return (
            gr.update(value=UNMATCHED_MODEL_DATASET_STYLED_ERROR, visible=True),
            gr.update(visible=False),
            gr.update(visible=False),
            gr.update(visible=False, open=False),
            gr.update(interactive=False),
            "",
            *dropdown_placement,
        )

    column_mappings = list_labels_and_features_from_dataset(
        ds_labels,
        ds_features,
        model_labels,
        uid,
    )

    # when labels or features are not aligned
    # show manually column mapping
    if (
        collections.Counter(model_labels) != collections.Counter(ds_labels)
        or ds_features[0] != "text"
    ):
        return (
            gr.update(value=MAPPING_STYLED_ERROR_WARNING, visible=True),
            gr.update(value=prediction_input, lines=min(len(prediction_input)//225 + 1, 5), visible=True),
            gr.update(value=prediction_response, visible=True),
            gr.update(visible=True, open=True),
            gr.update(interactive=(profile is not None and oauth_token is not None)),
            "",
            *column_mappings,
        )

    return (
        gr.update(value=VALIDATED_MODEL_DATASET_STYLED, visible=True),
        gr.update(value=prediction_input, lines=min(len(prediction_input)//225 + 1, 5), visible=True),
        gr.update(value=prediction_response, visible=True),
        gr.update(visible=True, open=False),
        gr.update(interactive=(profile is not None and oauth_token is not None)),
        "",
        *column_mappings,
    )


def check_column_mapping_keys_validity(all_mappings):
    if all_mappings is None:
        logger.warning("all_mapping is None")
        gr.Warning(CONFIRM_MAPPING_DETAILS_FAIL_RAW)
        return False

    if "labels" not in all_mappings.keys():
        logger.warning(f"Label mapping is not valid, all_mappings: {all_mappings}")
        return False

    return True

def enable_run_btn(uid, model_id, dataset_id, dataset_config, dataset_split, profile: gr.OAuthProfile | None, oath_token: gr.OAuthToken | None):
    if profile is None:
        return gr.update(interactive=False)
    if oath_token is None:
        return gr.update(interactive=False)
    if model_id == "" or dataset_id == "" or dataset_config == "" or dataset_split == "":
        logger.warn("Model id or dataset id is not selected")
        return gr.update(interactive=False)
    
    all_mappings = read_column_mapping(uid)
    if not check_column_mapping_keys_validity(all_mappings):
        logger.warn("Column mapping is not valid")
        return gr.update(interactive=False)

def construct_label_and_feature_mapping(all_mappings, ds_labels, ds_features, label_keys=None):
    label_mapping = {}
    if len(all_mappings["labels"].keys()) != len(ds_labels):
        logger.warn(f"""Label mapping corrupted: {CONFIRM_MAPPING_DETAILS_FAIL_RAW}. 
                    \nall_mappings: {all_mappings}\nds_labels: {ds_labels}""")
      
    if len(all_mappings["features"].keys()) != len(ds_features):
        logger.warn(f"""Feature mapping corrupted: {CONFIRM_MAPPING_DETAILS_FAIL_RAW}. 
                    \nall_mappings: {all_mappings}\nds_features: {ds_features}""")

    for i, label in zip(range(len(ds_labels)),  ds_labels):
        # align the saved labels with dataset labels order
        label_mapping.update({str(i): all_mappings["labels"][label]})

    if "features" not in all_mappings.keys():
        logger.warning("features not in all_mappings")
        gr.Warning(CONFIRM_MAPPING_DETAILS_FAIL_RAW)

    feature_mapping = all_mappings["features"]
    if len(label_keys) > 0:
      feature_mapping.update({"label": label_keys[0]})
    return label_mapping, feature_mapping

def show_hf_token_info(token):
    valid = check_hf_token_validity(token)
    if not valid:
        return gr.update(visible=True)
    return gr.update(visible=False)

def try_submit(m_id, d_id, config, split, uid, profile: gr.OAuthProfile | None, oath_token: gr.OAuthToken | None):
    print(oath_token.token)
    print(".>>>>>>>>>>>>>>>>>>>>>>")
    all_mappings = read_column_mapping(uid)
    if not check_column_mapping_keys_validity(all_mappings):
        return (gr.update(interactive=True), gr.update(visible=False))

    # get ds labels and features again for alignment
    ds = datasets.load_dataset(d_id, config, split=split, trust_remote_code=True)
    ds_labels, ds_features, label_keys = get_labels_and_features_from_dataset(ds)
    label_mapping, feature_mapping = construct_label_and_feature_mapping(all_mappings, ds_labels, ds_features, label_keys)
    
    eval_str = f"[{m_id}]<{d_id}({config}, {split} set)>"
    save_job_to_pipe(
        uid,
        (
            m_id,
            d_id,
            config,
            split,
            oath_token.token,
            uid,
            label_mapping,
            feature_mapping,
        ),
        eval_str,
        threading.Lock(),
    )
    gr.Info("Your evaluation has been submitted")

    new_uid = uuid.uuid4()
    scanners = read_scanners(uid)
    write_scanners(scanners, new_uid)

    return (
        gr.update(interactive=False),  # Submit button
        gr.update(value=f"{CHECK_LOG_SECTION_RAW}Your job id is: {uid}. ", lines=5, visible=True, interactive=False),
        new_uid,  # Allocate a new uuid
        gr.update(visible=False),
        gr.update(visible=False),
        gr.update(visible=False),
        gr.update(visible=False),
    )