anthonyrusso commited on
Commit
d646d8b
·
1 Parent(s): d72e937

remove needless things in ui

Browse files
Files changed (1) hide show
  1. app.py +3 -148
app.py CHANGED
@@ -199,23 +199,12 @@ def toggle_diffusion(choice):
199
 
200
  def ui_full(launch_kwargs):
201
  with gr.Blocks() as interface:
202
- gr.Markdown(
203
- """
204
- # MusicGen
205
- This is your private demo for [MusicGen](https://github.com/facebookresearch/audiocraft),
206
- a simple and controllable model for music generation
207
- presented at: ["Simple and Controllable Music Generation"](https://huggingface.co/papers/2306.05284)
208
- """
209
- )
210
  with gr.Row():
211
  with gr.Column():
212
  with gr.Row():
213
  text = gr.Text(label="Input Text", interactive=True)
214
- with gr.Column():
215
- radio = gr.Radio(["file", "mic"], value="file",
216
- label="Condition on a melody (optional) File or Mic")
217
- melody = gr.Audio(source="upload", type="numpy", label="File",
218
- interactive=True, elem_id="melody-input")
219
  with gr.Row():
220
  submit = gr.Button("Submit")
221
  # Adapted from https://github.com/rkfg/audiocraft/blob/long/app.py, MIT license.
@@ -244,105 +233,12 @@ def ui_full(launch_kwargs):
244
  temperature, cfg_coef],
245
  outputs=[output, audio_output, diffusion_output, audio_diffusion])
246
  radio.change(toggle_audio_src, radio, [melody], queue=False, show_progress=False)
247
-
248
- gr.Examples(
249
- fn=predict_full,
250
- examples=[
251
- [
252
- "An 80s driving pop song with heavy drums and synth pads in the background",
253
- "./assets/bach.mp3",
254
- "facebook/musicgen-melody",
255
- "Default"
256
- ],
257
- [
258
- "A cheerful country song with acoustic guitars",
259
- "./assets/bolero_ravel.mp3",
260
- "facebook/musicgen-melody",
261
- "Default"
262
- ],
263
- [
264
- "90s rock song with electric guitar and heavy drums",
265
- None,
266
- "facebook/musicgen-medium",
267
- "Default"
268
- ],
269
- [
270
- "a light and cheerly EDM track, with syncopated drums, aery pads, and strong emotions",
271
- "./assets/bach.mp3",
272
- "facebook/musicgen-melody",
273
- "Default"
274
- ],
275
- [
276
- "lofi slow bpm electro chill with organic samples",
277
- None,
278
- "facebook/musicgen-medium",
279
- "Default"
280
- ],
281
- [
282
- "Punk rock with loud drum and power guitar",
283
- None,
284
- "facebook/musicgen-medium",
285
- "MultiBand_Diffusion"
286
- ],
287
- ],
288
- inputs=[text, melody, model, decoder],
289
- outputs=[output]
290
- )
291
- gr.Markdown(
292
- """
293
- ### More details
294
-
295
- The model will generate a short music extract based on the description you provided.
296
- The model can generate up to 30 seconds of audio in one pass. It is now possible
297
- to extend the generation by feeding back the end of the previous chunk of audio.
298
- This can take a long time, and the model might lose consistency. The model might also
299
- decide at arbitrary positions that the song ends.
300
-
301
- **WARNING:** Choosing long durations will take a long time to generate (2min might take ~10min).
302
- An overlap of 12 seconds is kept with the previously generated chunk, and 18 "new" seconds
303
- are generated each time.
304
-
305
- We present 4 model variations:
306
- 1. facebook/musicgen-melody -- a music generation model capable of generating music condition
307
- on text and melody inputs. **Note**, you can also use text only.
308
- 2. facebook/musicgen-small -- a 300M transformer decoder conditioned on text only.
309
- 3. facebook/musicgen-medium -- a 1.5B transformer decoder conditioned on text only.
310
- 4. facebook/musicgen-large -- a 3.3B transformer decoder conditioned on text only.
311
-
312
- We also present two way of decoding the audio tokens
313
- 1. Use the default GAN based compression model
314
- 2. Use MultiBand Diffusion from (paper linknano )
315
-
316
- When using `facebook/musicgen-melody`, you can optionally provide a reference audio from
317
- which a broad melody will be extracted. The model will then try to follow both
318
- the description and melody provided.
319
-
320
- You can also use your own GPU or a Google Colab by following the instructions on our repo.
321
- See [github.com/facebookresearch/audiocraft](https://github.com/facebookresearch/audiocraft)
322
- for more details.
323
- """
324
- )
325
-
326
  interface.queue().launch(**launch_kwargs)
327
 
328
 
329
  def ui_batched(launch_kwargs):
330
  with gr.Blocks() as demo:
331
- gr.Markdown(
332
- """
333
- # MusicGen
334
-
335
- This is the demo for [MusicGen](https://github.com/facebookresearch/audiocraft),
336
- a simple and controllable model for music generation
337
- presented at: ["Simple and Controllable Music Generation"](https://huggingface.co/papers/2306.05284).
338
- <br/>
339
- <a href="https://huggingface.co/spaces/facebook/MusicGen?duplicate=true"
340
- style="display: inline-block;margin-top: .5em;margin-right: .25em;" target="_blank">
341
- <img style="margin-bottom: 0em;display: inline;margin-top: -.25em;"
342
- src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
343
- for longer sequences, more control and no queue.</p>
344
- """
345
- )
346
  with gr.Row():
347
  with gr.Column():
348
  with gr.Row():
@@ -360,47 +256,6 @@ def ui_batched(launch_kwargs):
360
  submit.click(predict_batched, inputs=[text, melody],
361
  outputs=[output, audio_output], batch=True, max_batch_size=MAX_BATCH_SIZE)
362
  radio.change(toggle_audio_src, radio, [melody], queue=False, show_progress=False)
363
- gr.Examples(
364
- fn=predict_batched,
365
- examples=[
366
- [
367
- "An 80s driving pop song with heavy drums and synth pads in the background",
368
- "./assets/bach.mp3",
369
- ],
370
- [
371
- "A cheerful country song with acoustic guitars",
372
- "./assets/bolero_ravel.mp3",
373
- ],
374
- [
375
- "90s rock song with electric guitar and heavy drums",
376
- None,
377
- ],
378
- [
379
- "a light and cheerly EDM track, with syncopated drums, aery pads, and strong emotions bpm: 130",
380
- "./assets/bach.mp3",
381
- ],
382
- [
383
- "lofi slow bpm electro chill with organic samples",
384
- None,
385
- ],
386
- ],
387
- inputs=[text, melody],
388
- outputs=[output]
389
- )
390
- gr.Markdown("""
391
- ### More details
392
-
393
- The model will generate 12 seconds of audio based on the description you provided.
394
- You can optionally provide a reference audio from which a broad melody will be extracted.
395
- The model will then try to follow both the description and melody provided.
396
- All samples are generated with the `melody` model.
397
-
398
- You can also use your own GPU or a Google Colab by following the instructions on our repo.
399
-
400
- See [github.com/facebookresearch/audiocraft](https://github.com/facebookresearch/audiocraft)
401
- for more details.
402
- """)
403
-
404
  demo.queue(max_size=8 * 4).launch(**launch_kwargs)
405
 
406
 
 
199
 
200
  def ui_full(launch_kwargs):
201
  with gr.Blocks() as interface:
202
+
 
 
 
 
 
 
 
203
  with gr.Row():
204
  with gr.Column():
205
  with gr.Row():
206
  text = gr.Text(label="Input Text", interactive=True)
207
+
 
 
 
 
208
  with gr.Row():
209
  submit = gr.Button("Submit")
210
  # Adapted from https://github.com/rkfg/audiocraft/blob/long/app.py, MIT license.
 
233
  temperature, cfg_coef],
234
  outputs=[output, audio_output, diffusion_output, audio_diffusion])
235
  radio.change(toggle_audio_src, radio, [melody], queue=False, show_progress=False)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
236
  interface.queue().launch(**launch_kwargs)
237
 
238
 
239
  def ui_batched(launch_kwargs):
240
  with gr.Blocks() as demo:
241
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
242
  with gr.Row():
243
  with gr.Column():
244
  with gr.Row():
 
256
  submit.click(predict_batched, inputs=[text, melody],
257
  outputs=[output, audio_output], batch=True, max_batch_size=MAX_BATCH_SIZE)
258
  radio.change(toggle_audio_src, radio, [melody], queue=False, show_progress=False)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
259
  demo.queue(max_size=8 * 4).launch(**launch_kwargs)
260
 
261