Zeyue7's picture
AudioX
8ab1cf8
raw
history blame contribute delete
22.8 kB
import gc
import platform
import os
import subprocess as sp
import gradio as gr
import json
import torch
import torchaudio
from aeiou.viz import audio_spectrogram_image
from einops import rearrange
from safetensors.torch import load_file
from torch.nn import functional as F
from torchaudio import transforms as T
from ..inference.generation import generate_diffusion_cond, generate_diffusion_uncond
from ..models.factory import create_model_from_config
from ..models.pretrained import get_pretrained_model
from ..models.utils import load_ckpt_state_dict
from ..inference.utils import prepare_audio
from ..training.utils import copy_state_dict
from ..data.utils import read_video, merge_video_audio
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
import warnings
warnings.filterwarnings("ignore", category=UserWarning)
device = torch.device("cpu")
os.environ['TMPDIR'] = './tmp'
current_model_name = None
current_model = None
current_sample_rate = None
current_sample_size = None
def load_model(model_name, model_config=None, model_ckpt_path=None, pretrained_name=None, pretransform_ckpt_path=None, device="cuda", model_half=False):
global model_configurations
if pretrained_name is not None:
print(f"Loading pretrained model {pretrained_name}")
model, model_config = get_pretrained_model(pretrained_name)
elif model_config is not None and model_ckpt_path is not None:
print(f"Creating model from config")
model = create_model_from_config(model_config)
print(f"Loading model checkpoint from {model_ckpt_path}")
copy_state_dict(model, load_ckpt_state_dict(model_ckpt_path))
sample_rate = model_config["sample_rate"]
sample_size = model_config["sample_size"]
if pretransform_ckpt_path is not None:
print(f"Loading pretransform checkpoint from {pretransform_ckpt_path}")
model.pretransform.load_state_dict(load_ckpt_state_dict(pretransform_ckpt_path), strict=False)
print(f"Done loading pretransform")
model.to(device).eval().requires_grad_(False)
if model_half:
model.to(torch.float16)
print(f"Done loading model")
return model, model_config, sample_rate, sample_size
def load_and_process_audio(audio_path, sample_rate, seconds_start, seconds_total):
if audio_path is None:
return torch.zeros((2, int(sample_rate * seconds_total)))
audio_tensor, sr = torchaudio.load(audio_path)
start_index = int(sample_rate * seconds_start)
target_length = int(sample_rate * seconds_total)
end_index = start_index + target_length
audio_tensor = audio_tensor[:, start_index:end_index]
if audio_tensor.shape[1] < target_length:
pad_length = target_length - audio_tensor.shape[1]
audio_tensor = F.pad(audio_tensor, (pad_length, 0))
return audio_tensor
def generate_cond(
prompt,
negative_prompt=None,
video_file=None,
video_path=None,
audio_prompt_file=None,
audio_prompt_path=None,
seconds_start=0,
seconds_total=10,
cfg_scale=6.0,
steps=250,
preview_every=None,
seed=-1,
sampler_type="dpmpp-3m-sde",
sigma_min=0.03,
sigma_max=1000,
cfg_rescale=0.0,
use_init=False,
init_audio=None,
init_noise_level=1.0,
mask_cropfrom=None,
mask_pastefrom=None,
mask_pasteto=None,
mask_maskstart=None,
mask_maskend=None,
mask_softnessL=None,
mask_softnessR=None,
mask_marination=None,
batch_size=1
):
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
print(f"Prompt: {prompt}")
preview_images = []
if preview_every == 0:
preview_every = None
try:
has_mps = platform.system() == "Darwin" and torch.backends.mps.is_available()
except Exception:
has_mps = False
if has_mps:
device = torch.device("mps")
elif torch.cuda.is_available():
device = torch.device("cuda")
else:
device = torch.device("cpu")
model_name = 'default'
cfg = model_configurations[model_name]
model_config_path = cfg.get("model_config")
ckpt_path = cfg.get("ckpt_path")
pretrained_name = cfg.get("pretrained_name")
pretransform_ckpt_path = cfg.get("pretransform_ckpt_path")
model_type = cfg.get("model_type", "diffusion_cond")
if model_config_path:
with open(model_config_path) as f:
model_config = json.load(f)
else:
model_config = None
target_fps = model_config.get("video_fps", 5)
global current_model_name, current_model, current_sample_rate, current_sample_size
if current_model is None or model_name != current_model_name:
current_model, model_config, sample_rate, sample_size = load_model(
model_name=model_name,
model_config=model_config,
model_ckpt_path=ckpt_path,
pretrained_name=pretrained_name,
pretransform_ckpt_path=pretransform_ckpt_path,
device=device,
model_half=False
)
current_model_name = model_name
model = current_model
current_sample_rate = sample_rate
current_sample_size = sample_size
else:
model = current_model
sample_rate = current_sample_rate
sample_size = current_sample_size
if video_file is not None:
video_path = video_file.name
elif video_path:
video_path = video_path.strip()
else:
video_path = None
if audio_prompt_file is not None:
print(f'audio_prompt_file: {audio_prompt_file}')
audio_path = audio_prompt_file.name
elif audio_prompt_path:
audio_path = audio_prompt_path.strip()
else:
audio_path = None
Video_tensors = read_video(video_path, seek_time=seconds_start, duration=seconds_total, target_fps=target_fps)
audio_tensor = load_and_process_audio(audio_path, sample_rate, seconds_start, seconds_total)
audio_tensor = audio_tensor.to(device)
seconds_input = sample_size / sample_rate
print(f'video_path: {video_path}')
if not prompt:
prompt = ""
conditioning = [{
"video_prompt": [Video_tensors.unsqueeze(0)],
"text_prompt": prompt,
"audio_prompt": audio_tensor.unsqueeze(0),
"seconds_start": seconds_start,
"seconds_total": seconds_input
}] * batch_size
if negative_prompt:
negative_conditioning = [{
"video_prompt": [Video_tensors.unsqueeze(0)],
"text_prompt": negative_prompt,
"audio_prompt": audio_tensor.unsqueeze(0),
"seconds_start": seconds_start,
"seconds_total": seconds_total
}] * batch_size
else:
negative_conditioning = None
try:
device = next(model.parameters()).device
except Exception as e:
device = next(current_model.parameters()).device
seed = int(seed)
if not use_init:
init_audio = None
input_sample_size = sample_size
if init_audio is not None:
in_sr, init_audio = init_audio
init_audio = torch.from_numpy(init_audio).float().div(32767)
if init_audio.dim() == 1:
init_audio = init_audio.unsqueeze(0)
elif init_audio.dim() == 2:
init_audio = init_audio.transpose(0, 1)
if in_sr != sample_rate:
resample_tf = T.Resample(in_sr, sample_rate).to(init_audio.device)
init_audio = resample_tf(init_audio)
audio_length = init_audio.shape[-1]
if audio_length > sample_size:
input_sample_size = audio_length + (model.min_input_length - (audio_length % model.min_input_length)) % model.min_input_length
init_audio = (sample_rate, init_audio)
def progress_callback(callback_info):
nonlocal preview_images
denoised = callback_info["denoised"]
current_step = callback_info["i"]
sigma = callback_info["sigma"]
if (current_step - 1) % preview_every == 0:
if model.pretransform is not None:
denoised = model.pretransform.decode(denoised)
denoised = rearrange(denoised, "b d n -> d (b n)")
denoised = denoised.clamp(-1, 1).mul(32767).to(torch.int16).cpu()
audio_spectrogram = audio_spectrogram_image(denoised, sample_rate=sample_rate)
preview_images.append((audio_spectrogram, f"Step {current_step} sigma={sigma:.3f})"))
if mask_cropfrom is not None:
mask_args = {
"cropfrom": mask_cropfrom,
"pastefrom": mask_pastefrom,
"pasteto": mask_pasteto,
"maskstart": mask_maskstart,
"maskend": mask_maskend,
"softnessL": mask_softnessL,
"softnessR": mask_softnessR,
"marination": mask_marination,
}
else:
mask_args = None
if model_type == "diffusion_cond":
audio = generate_diffusion_cond(
model,
conditioning=conditioning,
negative_conditioning=negative_conditioning,
steps=steps,
cfg_scale=cfg_scale,
batch_size=batch_size,
sample_size=input_sample_size,
sample_rate=sample_rate,
seed=seed,
device=device,
sampler_type=sampler_type,
sigma_min=sigma_min,
sigma_max=sigma_max,
init_audio=init_audio,
init_noise_level=init_noise_level,
mask_args=mask_args,
callback=progress_callback if preview_every is not None else None,
scale_phi=cfg_rescale
)
elif model_type == "diffusion_uncond":
audio = generate_diffusion_uncond(
model,
steps=steps,
batch_size=batch_size,
sample_size=input_sample_size,
seed=seed,
device=device,
sampler_type=sampler_type,
sigma_min=sigma_min,
sigma_max=sigma_max,
init_audio=init_audio,
init_noise_level=init_noise_level,
callback=progress_callback if preview_every is not None else None
)
else:
raise ValueError(f"Unsupported model type: {model_type}")
audio = rearrange(audio, "b d n -> d (b n)")
audio = audio.to(torch.float32).div(torch.max(torch.abs(audio))).clamp(-1, 1).mul(32767).to(torch.int16).cpu()
file_name = os.path.basename(video_path) if video_path else "output"
output_dir = f"demo_result"
if not os.path.exists(output_dir):
os.makedirs(output_dir)
output_video_path = f"{output_dir}/{file_name}"
torchaudio.save(f"{output_dir}/output.wav", audio, sample_rate)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
if video_path:
merge_video_audio(video_path, f"{output_dir}/output.wav", output_video_path, seconds_start, seconds_total)
audio_spectrogram = audio_spectrogram_image(audio, sample_rate=sample_rate)
del video_path
torch.cuda.empty_cache()
gc.collect()
return (output_video_path, f"{output_dir}/output.wav")
def toggle_custom_model(selected_model):
return gr.Row.update(visible=(selected_model == "Custom Model"))
def create_sampling_ui(model_config_map, inpainting=False):
with gr.Blocks() as demo:
gr.Markdown(
"""
# 🎧AudioX: Diffusion Transformer for Anything-to-Audio Generation
**[Project Page](https://zeyuet.github.io/AudioX/) Β· [Huggingface](https://huggingface.co/Zeyue7/AudioX) Β· [GitHub](https://github.com/ZeyueT/AudioX)**
"""
)
with gr.Tab("Generation"):
with gr.Row():
with gr.Column():
prompt = gr.Textbox(show_label=False, placeholder="Enter your prompt")
negative_prompt = gr.Textbox(show_label=False, placeholder="Negative prompt", visible=False)
video_path = gr.Textbox(label="Video Path", placeholder="Enter video file path")
video_file = gr.File(label="Upload Video File")
audio_prompt_file = gr.File(label="Upload Audio Prompt File", visible=False)
audio_prompt_path = gr.Textbox(label="Audio Prompt Path", placeholder="Enter audio file path", visible=False)
with gr.Row():
with gr.Column(scale=6):
with gr.Accordion("Video Params", open=False):
seconds_start_slider = gr.Slider(minimum=0, maximum=512, step=1, value=0, label="Video Seconds Start")
seconds_total_slider = gr.Slider(minimum=0, maximum=10, step=1, value=10, label="Seconds Total", interactive=False)
with gr.Row():
with gr.Column(scale=4):
with gr.Accordion("Sampler Params", open=False):
steps_slider = gr.Slider(minimum=1, maximum=500, step=1, value=100, label="Steps")
preview_every_slider = gr.Slider(minimum=0, maximum=100, step=1, value=0, label="Preview Every")
cfg_scale_slider = gr.Slider(minimum=0.0, maximum=25.0, step=0.1, value=7.0, label="CFG Scale")
seed_textbox = gr.Textbox(label="Seed (set to -1 for random seed)", value="-1")
sampler_type_dropdown = gr.Dropdown(
["dpmpp-2m-sde", "dpmpp-3m-sde", "k-heun", "k-lms", "k-dpmpp-2s-ancestral", "k-dpm-2", "k-dpm-fast"],
label="Sampler Type",
value="dpmpp-3m-sde"
)
sigma_min_slider = gr.Slider(minimum=0.0, maximum=2.0, step=0.01, value=0.03, label="Sigma Min")
sigma_max_slider = gr.Slider(minimum=0.0, maximum=1000.0, step=0.1, value=500, label="Sigma Max")
cfg_rescale_slider = gr.Slider(minimum=0.0, maximum=1, step=0.01, value=0.0, label="CFG Rescale Amount")
with gr.Row():
with gr.Column(scale=4):
with gr.Accordion("Init Audio", open=False, visible=False):
init_audio_checkbox = gr.Checkbox(label="Use Init Audio")
init_audio_input = gr.Audio(label="Init Audio")
init_noise_level_slider = gr.Slider(minimum=0.1, maximum=100.0, step=0.01, value=0.1, label="Init Noise Level")
gr.Markdown("## Examples")
with gr.Accordion("Click to show examples", open=False):
with gr.Row():
gr.Markdown("**πŸ“ Task: Text-to-Audio**")
with gr.Column(scale=1.2):
gr.Markdown("Prompt: *Typing on a keyboard*")
ex1 = gr.Button("Load Example")
with gr.Column(scale=1.2):
gr.Markdown("Prompt: *Ocean waves crashing*")
ex2 = gr.Button("Load Example")
with gr.Column(scale=1.2):
gr.Markdown("Prompt: *Footsteps in snow*")
ex3 = gr.Button("Load Example")
with gr.Row():
gr.Markdown("**🎢 Task: Text-to-Music**")
with gr.Column(scale=1.2):
gr.Markdown("Prompt: *An orchestral music piece for a fantasy world.*")
ex4 = gr.Button("Load Example")
with gr.Column(scale=1.2):
gr.Markdown("Prompt: *Produce upbeat electronic music for a dance party*")
ex5 = gr.Button("Load Example")
with gr.Column(scale=1.2):
gr.Markdown("Prompt: *A dreamy lo-fi beat with vinyl crackle*")
ex6 = gr.Button("Load Example")
with gr.Row():
gr.Markdown("**🎬 Task: Video-to-Audio**\nPrompt: *Generate general audio for the video*")
with gr.Column(scale=1.2):
gr.Video("example/V2A_sample-1.mp4")
ex7 = gr.Button("Load Example")
with gr.Column(scale=1.2):
gr.Video("example/V2A_sample-2.mp4")
ex8 = gr.Button("Load Example")
with gr.Column(scale=1.2):
gr.Video("example/V2A_sample-3.mp4")
ex9 = gr.Button("Load Example")
with gr.Row():
gr.Markdown("**🎡 Task: Video-to-Music**\nPrompt: *Generate music for the video*")
with gr.Column(scale=1.2):
gr.Video("example/V2M_sample-1.mp4")
ex10 = gr.Button("Load Example")
with gr.Column(scale=1.2):
gr.Video("example/V2M_sample-2.mp4")
ex11 = gr.Button("Load Example")
with gr.Column(scale=1.2):
gr.Video("example/V2M_sample-3.mp4")
ex12 = gr.Button("Load Example")
with gr.Row():
generate_button = gr.Button("Generate", variant='primary', scale=1)
with gr.Row():
with gr.Column(scale=6):
video_output = gr.Video(label="Output Video", interactive=False)
audio_output = gr.Audio(label="Output Audio", interactive=False)
send_to_init_button = gr.Button("Send to Init Audio", scale=1, visible=False)
send_to_init_button.click(
fn=lambda audio: audio,
inputs=[audio_output],
outputs=[init_audio_input]
)
inputs = [
prompt,
negative_prompt,
video_file,
video_path,
audio_prompt_file,
audio_prompt_path,
seconds_start_slider,
seconds_total_slider,
cfg_scale_slider,
steps_slider,
preview_every_slider,
seed_textbox,
sampler_type_dropdown,
sigma_min_slider,
sigma_max_slider,
cfg_rescale_slider,
init_audio_checkbox,
init_audio_input,
init_noise_level_slider
]
generate_button.click(
fn=generate_cond,
inputs=inputs,
outputs=[
video_output,
audio_output
],
api_name="generate"
)
ex1.click(lambda: ["Typing on a keyboard", None, None, None, None, None, 0, 10, 7.0, 100, 0, "1225575558", "dpmpp-3m-sde", 0.03, 500, 0.0, False, None, 0.1], inputs=[], outputs=inputs)
ex2.click(lambda: ["Ocean waves crashing", None, None, None, None, None, 0, 10, 7.0, 100, 0, "3615819170", "dpmpp-3m-sde", 0.03, 500, 0.0, False, None, 0.1], inputs=[], outputs=inputs)
ex3.click(lambda: ["Footsteps in snow", None, None, None, None, None, 0, 10, 7.0, 100, 0, "1703896811", "dpmpp-3m-sde", 0.03, 500, 0.0, False, None, 0.1], inputs=[], outputs=inputs)
ex4.click(lambda: ["An orchestral music piece for a fantasy world.", None, None, None, None, None, 0, 10, 7.0, 100, 0, "1561898939", "dpmpp-3m-sde", 0.03, 500, 0.0, False, None, 0.1], inputs=[], outputs=inputs)
ex5.click(lambda: ["Produce upbeat electronic music for a dance party", None, None, None, None, None, 0, 10, 7.0, 100, 0, "406022999", "dpmpp-3m-sde", 0.03, 500, 0.0, False, None, 0.1], inputs=[], outputs=inputs)
ex6.click(lambda: ["A dreamy lo-fi beat with vinyl crackle", None, None, None, None, None, 0, 10, 7.0, 100, 0, "807934770", "dpmpp-3m-sde", 0.03, 500, 0.0, False, None, 0.1], inputs=[], outputs=inputs)
ex7.click(lambda: ["Generate general audio for the video", None, None, "example/V2A_sample-1.mp4", None, None, 0, 10, 7.0, 100, 0, "3737819478", "dpmpp-3m-sde", 0.03, 500, 0.0, False, None, 0.1], inputs=[], outputs=inputs)
ex8.click(lambda: ["Generate general audio for the video", None, None, "example/V2A_sample-2.mp4", None, None, 0, 10, 7.0, 100, 0, "1900718499", "dpmpp-3m-sde", 0.03, 500, 0.0, False, None, 0.1], inputs=[], outputs=inputs)
ex9.click(lambda: ["Generate general audio for the video", None, None, "example/V2A_sample-3.mp4", None, None, 0, 10, 7.0, 100, 0, "2289822202", "dpmpp-3m-sde", 0.03, 500, 0.0, False, None, 0.1], inputs=[], outputs=inputs)
ex10.click(lambda: ["Generate music for the video", None, None, "example/V2M_sample-1.mp4", None, None, 0, 10, 7.0, 100, 0, "3498087420", "dpmpp-3m-sde", 0.03, 500, 0.0, False, None, 0.1], inputs=[], outputs=inputs)
ex11.click(lambda: ["Generate music for the video", None, None, "example/V2M_sample-2.mp4", None, None, 0, 10, 7.0, 100, 0, "3753837734", "dpmpp-3m-sde", 0.03, 500, 0.0, False, None, 0.1], inputs=[], outputs=inputs)
ex12.click(lambda: ["Generate music for the video", None, None, "example/V2M_sample-3.mp4", None, None, 0, 10, 7.0, 100, 0, "3510832996", "dpmpp-3m-sde", 0.03, 500, 0.0, False, None, 0.1], inputs=[], outputs=inputs)
return demo
def create_txt2audio_ui(model_config_map):
with gr.Blocks(css=".gradio-container { max-width: 1120px; margin: auto; }") as ui:
with gr.Tab("Generation"):
create_sampling_ui(model_config_map)
return ui
def toggle_custom_model(selected_model):
return gr.Row.update(visible=(selected_model == "Custom Model"))
def create_ui(model_config_path=None, ckpt_path=None, pretrained_name=None, pretransform_ckpt_path=None, model_half=False):
global model_configurations
global device
try:
has_mps = platform.system() == "Darwin" and torch.backends.mps.is_available()
except Exception:
has_mps = False
if has_mps:
device = torch.device("mps")
elif torch.cuda.is_available():
device = torch.device("cuda")
else:
device = torch.device("cpu")
print("Using device:", device)
model_configurations = {
"default": {
"model_config": "./model/config.json",
"ckpt_path": "./model/model.ckpt"
}
}
ui = create_txt2audio_ui(model_configurations)
return ui
if __name__ == "__main__":
ui = create_ui(
model_config_path='./model/config.json',
share=True
)
ui.launch()