Spaces:
Running
on
Zero
Running
on
Zero
import os | |
from glob import glob | |
import cv2 | |
import numpy as np | |
from PIL import Image | |
import torch | |
from torchvision import transforms | |
import gradio as gr | |
import spaces | |
from models.GCoNet import GCoNet | |
device = ['cpu', 'cuda'][0] | |
class ImagePreprocessor(): | |
def __init__(self) -> None: | |
self.transform_image = transforms.Compose([ | |
transforms.Resize((256, 256)), | |
transforms.ToTensor(), | |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), | |
]) | |
def proc(self, image): | |
image = self.transform_image(image) | |
return image | |
model = GCoNet(bb_pretrained=False).to(device) | |
state_dict = './ultimate_duts_cocoseg (The best one).pth' | |
if os.path.exists(state_dict): | |
gconet_dict = torch.load(state_dict, map_location=device) | |
model.load_state_dict(gconet_dict) | |
model.eval() | |
def pred_maps(images): | |
assert (images is not None), 'AssertionError: images cannot be None.' | |
# For tab_batch | |
save_paths = [] | |
save_dir = 'preds-GCoNet_plus' | |
if not os.path.exists(save_dir): | |
os.makedirs(save_dir) | |
image_array_lst = [] | |
for idx_image, image_src in enumerate(images): | |
save_paths.append(os.path.join(save_dir, "{}.png".format(os.path.splitext(os.path.basename(image_src))[0]))) | |
if isinstance(image_src, str): | |
image = np.array(Image.open(image_src)) | |
else: | |
image = image_src | |
image_array_lst.append(image) | |
images = image_array_lst | |
image_shapes = [image.shape[:2] for image in images] | |
images = [Image.fromarray(image) for image in images] | |
images_proc = [] | |
image_preprocessor = ImagePreprocessor() | |
for image in images: | |
images_proc.append(image_preprocessor.proc(image)) | |
images_proc = torch.cat([image_proc.unsqueeze(0) for image_proc in images_proc]) | |
with torch.no_grad(): | |
scaled_preds_tensor = model(images_proc.to(device))[-1] | |
preds = [] | |
for image_shape, pred_tensor, save_path in zip(image_shapes, scaled_preds_tensor, save_paths): | |
if device == 'cuda': | |
pred_tensor = pred_tensor.cpu() | |
pred_tensor = torch.nn.functional.interpolate(pred_tensor.unsqueeze(0), size=image_shape, mode='bilinear', align_corners=True).squeeze().numpy() | |
cv2.imwrite(save_path, pred_tensor) | |
zip_file_path = os.path.join(save_dir, "{}.zip".format(save_dir)) | |
with zipfile.ZipFile(zip_file_path, 'w') as zipf: | |
for file in save_paths: | |
zipf.write(file, os.path.basename(file)) | |
return save_paths, zip_file_path | |
# N = 4 | |
# examples = [[_] for _ in glob('example_images/butterfly/*')][:N] | |
tab_batch = gr.Interface( | |
fn=pred_maps, | |
inputs=gr.File(label="Upload multiple images in a group", type="filepath", file_count="multiple"), | |
outputs=[gr.Gallery(label="GCoNet+'s predictions"), gr.File(label="Download predicted maps.")], | |
api_name="batch", | |
description='Upload pictures, most of which contain salient objects of the same class. Our demo will give you the binary maps of these co-salient objects :)', | |
) | |
demo = gr.TabbedInterface( | |
[tab_batch], | |
['batch'], | |
title="Online demo for `GCoNet+: A Stronger Group Collaborative Co-Salient Object Detector (T-PAMI 2023)`", | |
) | |
demo.launch(debug=True) | |