Spaces:
Zienab
/
Runtime error

File size: 1,333 Bytes
9db4439
5ae7a14
 
9db4439
 
 
5ae7a14
9db4439
 
 
 
 
5ae7a14
9db4439
299c47b
9db4439
5ae7a14
 
 
 
 
9ea0c0e
9db4439
 
5ae7a14
9db4439
5ae7a14
9db4439
 
5ae7a14
9db4439
9ea0c0e
9db4439
9ea0c0e
 
 
 
 
9db4439
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import os
from transformers import AutoModel, AutoTokenizer
from transformers_modules.RufusRubin777.GOT_OCR2_0_CPU.modeling_GOT import GOTModel, GOTConfig

class OCRModel:
    _instance = None

    def __new__(cls):
        if cls._instance is None:
            cls._instance = super(OCRModel, cls).__new__(cls)
            cls._instance.initialize()
        return cls._instance

    def initialize(self):
        model_path = os.getenv('MODEL_PATH', 'RufusRubin777/GOT-OCR2_0_CPU')
        
        # تحميل النموذج بالطريقة الصحيحة
        config = GOTConfig.from_pretrained(model_path)
        self.model = GOTModel.from_pretrained(
            model_path,
            config=config,
            local_files_only=False
        )
        
        self.tokenizer = AutoTokenizer.from_pretrained(
            model_path,
            local_files_only=False
        )
        
        self.model.eval()
        
    def process_image(self, image_stream):
        try:
            # فتح الصورة من الذاكرة
            image = Image.open(image_stream)
            
            with torch.no_grad():
                result = self.model.chat(self.tokenizer, image, ocr_type='format')
            return result
        except Exception as e:
            return f"Error processing image: {str(e)}"