Spaces:
Sleeping
Sleeping
from __future__ import annotations | |
import gc | |
import pathlib | |
import sys | |
import gradio as gr | |
import PIL.Image | |
import numpy as np | |
import torch | |
from diffusers import StableDiffusionPipeline | |
sys.path.insert(0, './ReVersion') | |
class InferencePipeline: | |
def __init__(self): | |
self.pipe = None | |
self.device = torch.device( | |
'cuda:0' if torch.cuda.is_available() else 'cpu') | |
self.weight_path = None | |
def clear(self) -> None: | |
self.weight_path = None | |
del self.pipe | |
self.pipe = None | |
torch.cuda.empty_cache() | |
gc.collect() | |
def get_weight_path(name: str) -> pathlib.Path: | |
curr_dir = pathlib.Path(__file__).parent | |
return curr_dir / name | |
def load_pipe(self, model_id: str, filename: str) -> None: | |
weight_path = self.get_weight_path(filename) | |
if weight_path == self.weight_path: | |
return | |
self.weight_path = weight_path | |
weight = torch.load(self.weight_path, map_location=self.device) | |
if self.device.type == 'cpu': | |
pipe = StableDiffusionPipeline.from_pretrained(model_id) | |
else: | |
pipe = StableDiffusionPipeline.from_pretrained( | |
model_id, torch_dtype=torch.float16) | |
pipe = pipe.to(self.device) | |
from src import diffuser_training | |
diffuser_training.load_model(pipe.text_encoder, pipe.tokenizer, pipe.unet, weight_path, compress=False) | |
self.pipe = pipe | |
def run( | |
self, | |
base_model: str, | |
weight_name: str, | |
prompt: str, | |
seed: int, | |
n_steps: int, | |
guidance_scale: float, | |
eta: float, | |
batch_size: int, | |
resolution: int, | |
) -> PIL.Image.Image: | |
if not torch.cuda.is_available(): | |
raise gr.Error('CUDA is not available.') | |
self.load_pipe(base_model, weight_name) | |
generator = torch.Generator(device=self.device).manual_seed(seed) | |
out = self.pipe([prompt]*batch_size, | |
num_inference_steps=n_steps, | |
guidance_scale=guidance_scale, | |
height=resolution, width=resolution, | |
eta = eta, | |
generator=generator) # type: ignore | |
torch.cuda.empty_cache() | |
out = out.images | |
out = PIL.Image.fromarray(np.hstack([np.array(x) for x in out])) | |
return out |