Spaces:
Sleeping
Sleeping
update
Browse files- .gitignore +1 -0
- app.py +29 -248
- inference.py +81 -66
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
experiments/*
|
app.py
CHANGED
@@ -19,7 +19,8 @@ import pathlib
|
|
19 |
import gradio as gr
|
20 |
import torch
|
21 |
|
22 |
-
from inference import
|
|
|
23 |
# from trainer import Trainer
|
24 |
# from uploader import upload
|
25 |
|
@@ -69,173 +70,6 @@ def update_output_files() -> dict:
|
|
69 |
paths = [path.as_posix() for path in paths] # type: ignore
|
70 |
return gr.update(value=paths or None)
|
71 |
|
72 |
-
|
73 |
-
def create_training_demo(trainer: Trainer,
|
74 |
-
pipe: InferencePipeline) -> gr.Blocks:
|
75 |
-
with gr.Blocks() as demo:
|
76 |
-
base_model = gr.Dropdown(
|
77 |
-
choices=['stabilityai/stable-diffusion-2-1-base', 'CompVis/stable-diffusion-v1-4'],
|
78 |
-
value='CompVis/stable-diffusion-v1-4',
|
79 |
-
label='Base Model',
|
80 |
-
visible=True)
|
81 |
-
resolution = gr.Dropdown(choices=['512', '768'],
|
82 |
-
value='512',
|
83 |
-
label='Resolution',
|
84 |
-
visible=True)
|
85 |
-
|
86 |
-
with gr.Row():
|
87 |
-
with gr.Box():
|
88 |
-
concept_images_collection = []
|
89 |
-
concept_prompt_collection = []
|
90 |
-
class_prompt_collection = []
|
91 |
-
buttons_collection = []
|
92 |
-
delete_collection = []
|
93 |
-
is_visible = []
|
94 |
-
maximum_concepts = 3
|
95 |
-
row = [None] * maximum_concepts
|
96 |
-
for x in range(maximum_concepts):
|
97 |
-
ordinal = lambda n: "%d%s" % (n, "tsnrhtdd"[(n // 10 % 10 != 1) * (n % 10 < 4) * n % 10::4])
|
98 |
-
ordinal_concept = ["<new1> cat", "<new2> wooden pot", "<new3> chair"]
|
99 |
-
if(x == 0):
|
100 |
-
visible = True
|
101 |
-
is_visible.append(gr.State(value=True))
|
102 |
-
else:
|
103 |
-
visible = False
|
104 |
-
is_visible.append(gr.State(value=False))
|
105 |
-
|
106 |
-
concept_images_collection.append(gr.Files(label=f'''Upload the images for your {ordinal(x+1) if (x>0) else ""} concept''', visible=visible))
|
107 |
-
with gr.Column(visible=visible) as row[x]:
|
108 |
-
concept_prompt_collection.append(
|
109 |
-
gr.Textbox(label=f'''{ordinal(x+1) if (x>0) else ""} concept prompt ''', max_lines=1,
|
110 |
-
placeholder=f'''Example: "photo of a {ordinal_concept[x]}"''' )
|
111 |
-
)
|
112 |
-
class_prompt_collection.append(
|
113 |
-
gr.Textbox(label=f'''{ordinal(x+1) if (x>0) else ""} class prompt ''',
|
114 |
-
max_lines=1, placeholder=f'''Example: "{ordinal_concept[x][7:]}"''')
|
115 |
-
)
|
116 |
-
with gr.Row():
|
117 |
-
if(x < maximum_concepts-1):
|
118 |
-
buttons_collection.append(gr.Button(value=f"Add {ordinal(x+2)} concept", visible=visible))
|
119 |
-
if(x > 0):
|
120 |
-
delete_collection.append(gr.Button(value=f"Delete {ordinal(x+1)} concept"))
|
121 |
-
|
122 |
-
counter_add = 1
|
123 |
-
for button in buttons_collection:
|
124 |
-
if(counter_add < len(buttons_collection)):
|
125 |
-
button.click(lambda:
|
126 |
-
[gr.update(visible=True),gr.update(visible=True), gr.update(visible=False), gr.update(visible=True), True, None],
|
127 |
-
None,
|
128 |
-
[row[counter_add], concept_images_collection[counter_add], buttons_collection[counter_add-1], buttons_collection[counter_add], is_visible[counter_add], concept_images_collection[counter_add]], queue=False)
|
129 |
-
else:
|
130 |
-
button.click(lambda:
|
131 |
-
[gr.update(visible=True),gr.update(visible=True), gr.update(visible=False), True],
|
132 |
-
None,
|
133 |
-
[row[counter_add], concept_images_collection[counter_add], buttons_collection[counter_add-1], is_visible[counter_add]], queue=False)
|
134 |
-
counter_add += 1
|
135 |
-
|
136 |
-
counter_delete = 1
|
137 |
-
for delete_button in delete_collection:
|
138 |
-
if(counter_delete < len(delete_collection)+1):
|
139 |
-
if counter_delete == 1:
|
140 |
-
delete_button.click(lambda:
|
141 |
-
[gr.update(visible=False, value=None),gr.update(visible=False), gr.update(visible=True), gr.update(visible=False),False],
|
142 |
-
None,
|
143 |
-
[concept_images_collection[counter_delete], row[counter_delete], buttons_collection[counter_delete-1], buttons_collection[counter_delete], is_visible[counter_delete]], queue=False)
|
144 |
-
else:
|
145 |
-
delete_button.click(lambda:
|
146 |
-
[gr.update(visible=False, value=None),gr.update(visible=False), gr.update(visible=True), False],
|
147 |
-
None,
|
148 |
-
[concept_images_collection[counter_delete], row[counter_delete], buttons_collection[counter_delete-1], is_visible[counter_delete]], queue=False)
|
149 |
-
counter_delete += 1
|
150 |
-
gr.Markdown('''
|
151 |
-
- We use "\<new1\>" modifier_token in front of the concept, e.g., "\<new1\> cat". For multiple concepts use "\<new2\>", "\<new3\>" etc. Increase the number of steps with more concepts.
|
152 |
-
- For a new concept an e.g. concept prompt is "photo of a \<new1\> cat" and "cat" for class prompt.
|
153 |
-
- For a style concept, use "painting in the style of \<new1\> art" for concept prompt and "art" for class prompt.
|
154 |
-
- Class prompt should be the object category.
|
155 |
-
- If "Train Text Encoder", disable "modifier token" and use any unique text to describe the concept e.g. "ktn cat".
|
156 |
-
''')
|
157 |
-
with gr.Box():
|
158 |
-
gr.Markdown('Training Parameters')
|
159 |
-
with gr.Row():
|
160 |
-
modifier_token = gr.Checkbox(label='modifier token',
|
161 |
-
value=True)
|
162 |
-
train_text_encoder = gr.Checkbox(label='Train Text Encoder',
|
163 |
-
value=False)
|
164 |
-
num_training_steps = gr.Number(
|
165 |
-
label='Number of Training Steps', value=1000, precision=0)
|
166 |
-
learning_rate = gr.Number(label='Learning Rate', value=0.00001)
|
167 |
-
batch_size = gr.Number(
|
168 |
-
label='batch_size', value=1, precision=0)
|
169 |
-
with gr.Row():
|
170 |
-
use_8bit_adam = gr.Checkbox(label='Use 8bit Adam', value=True)
|
171 |
-
gradient_checkpointing = gr.Checkbox(label='Enable gradient checkpointing', value=False)
|
172 |
-
with gr.Accordion('Other Parameters', open=False):
|
173 |
-
gradient_accumulation = gr.Number(
|
174 |
-
label='Number of Gradient Accumulation',
|
175 |
-
value=1,
|
176 |
-
precision=0)
|
177 |
-
num_reg_images = gr.Number(
|
178 |
-
label='Number of Class Concept images',
|
179 |
-
value=200,
|
180 |
-
precision=0)
|
181 |
-
gen_images = gr.Checkbox(label='Generated images as regularization',
|
182 |
-
value=False)
|
183 |
-
gr.Markdown('''
|
184 |
-
- It will take about ~10 minutes to train for 1000 steps and ~21GB on a 3090 GPU.
|
185 |
-
- Our results in the paper are trained with batch-size 4 (8 including class regularization samples).
|
186 |
-
- Enable gradient checkpointing for lower memory requirements (~14GB) at the expense of slower backward pass.
|
187 |
-
- Note that your trained models will be deleted when the second training is started. You can upload your trained model in the "Upload" tab.
|
188 |
-
- We retrieve real images for class concept using clip_retireval library which can take some time.
|
189 |
-
''')
|
190 |
-
|
191 |
-
run_button = gr.Button('Start Training')
|
192 |
-
with gr.Box():
|
193 |
-
with gr.Row():
|
194 |
-
check_status_button = gr.Button('Check Training Status')
|
195 |
-
with gr.Column():
|
196 |
-
with gr.Box():
|
197 |
-
gr.Markdown('Message')
|
198 |
-
training_status = gr.Markdown()
|
199 |
-
output_files = gr.Files(label='Trained Weight Files')
|
200 |
-
|
201 |
-
run_button.click(fn=pipe.clear,
|
202 |
-
inputs=None,
|
203 |
-
outputs=None,)
|
204 |
-
run_button.click(fn=trainer.run,
|
205 |
-
inputs=[
|
206 |
-
base_model,
|
207 |
-
resolution,
|
208 |
-
num_training_steps,
|
209 |
-
learning_rate,
|
210 |
-
train_text_encoder,
|
211 |
-
modifier_token,
|
212 |
-
gradient_accumulation,
|
213 |
-
batch_size,
|
214 |
-
use_8bit_adam,
|
215 |
-
gradient_checkpointing,
|
216 |
-
gen_images,
|
217 |
-
num_reg_images,
|
218 |
-
] +
|
219 |
-
concept_images_collection +
|
220 |
-
concept_prompt_collection +
|
221 |
-
class_prompt_collection
|
222 |
-
,
|
223 |
-
outputs=[
|
224 |
-
training_status,
|
225 |
-
output_files,
|
226 |
-
],
|
227 |
-
queue=False)
|
228 |
-
check_status_button.click(fn=trainer.check_if_running,
|
229 |
-
inputs=None,
|
230 |
-
outputs=training_status,
|
231 |
-
queue=False)
|
232 |
-
check_status_button.click(fn=update_output_files,
|
233 |
-
inputs=None,
|
234 |
-
outputs=output_files,
|
235 |
-
queue=False)
|
236 |
-
return demo
|
237 |
-
|
238 |
-
|
239 |
def find_weight_files() -> list[str]:
|
240 |
curr_dir = pathlib.Path(__file__).parent
|
241 |
paths = sorted(curr_dir.rglob('*.bin'))
|
@@ -251,49 +85,32 @@ def create_inference_demo(pipe: InferencePipeline) -> gr.Blocks:
|
|
251 |
with gr.Blocks() as demo:
|
252 |
with gr.Row():
|
253 |
with gr.Column():
|
254 |
-
|
255 |
-
choices=['
|
256 |
-
value='
|
257 |
-
label='
|
258 |
visible=True)
|
259 |
-
resolution = gr.Dropdown(choices=[512, 768],
|
260 |
-
value=512,
|
261 |
-
label='Resolution',
|
262 |
-
visible=True)
|
263 |
reload_button = gr.Button('Reload Weight List')
|
264 |
-
weight_name = gr.Dropdown(choices=find_weight_files(),
|
265 |
-
value='custom-diffusion-models/cat.bin',
|
266 |
-
label='Custom Diffusion Weight File')
|
267 |
prompt = gr.Textbox(
|
268 |
label='Prompt',
|
269 |
max_lines=1,
|
270 |
-
placeholder='Example: "
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
with gr.Accordion('Other Parameters', open=False):
|
277 |
-
|
278 |
-
minimum=0,
|
279 |
-
maximum=500,
|
280 |
-
step=1,
|
281 |
-
value=100)
|
282 |
-
guidance_scale = gr.Slider(label='CFG Scale',
|
283 |
minimum=0,
|
284 |
maximum=50,
|
285 |
step=0.1,
|
286 |
-
value=
|
287 |
-
|
288 |
-
minimum=0,
|
289 |
-
maximum=1.,
|
290 |
-
step=0.1,
|
291 |
-
value=1.)
|
292 |
-
batch_size = gr.Slider(label='Batch Size',
|
293 |
minimum=0,
|
294 |
maximum=10.,
|
295 |
step=1,
|
296 |
-
value=
|
297 |
|
298 |
run_button = gr.Button('Generate')
|
299 |
|
@@ -308,61 +125,27 @@ def create_inference_demo(pipe: InferencePipeline) -> gr.Blocks:
|
|
308 |
reload_button.click(fn=reload_custom_diffusion_weight_list,
|
309 |
inputs=None,
|
310 |
outputs=weight_name)
|
311 |
-
prompt.submit(fn=
|
312 |
inputs=[
|
313 |
-
|
314 |
-
weight_name,
|
315 |
prompt,
|
316 |
-
|
317 |
-
|
318 |
-
guidance_scale,
|
319 |
-
eta,
|
320 |
-
batch_size,
|
321 |
-
resolution
|
322 |
],
|
323 |
outputs=result,
|
324 |
queue=False)
|
325 |
-
run_button.click(fn=
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
guidance_scale,
|
333 |
-
eta,
|
334 |
-
batch_size,
|
335 |
-
resolution
|
336 |
-
],
|
337 |
outputs=result,
|
338 |
queue=False)
|
339 |
return demo
|
340 |
|
341 |
|
342 |
-
def create_upload_demo() -> gr.Blocks:
|
343 |
-
with gr.Blocks() as demo:
|
344 |
-
model_name = gr.Textbox(label='Model Name')
|
345 |
-
hf_token = gr.Textbox(
|
346 |
-
label='Hugging Face Token (with write permission)')
|
347 |
-
upload_button = gr.Button('Upload')
|
348 |
-
with gr.Box():
|
349 |
-
gr.Markdown('Message')
|
350 |
-
result = gr.Markdown()
|
351 |
-
gr.Markdown('''
|
352 |
-
- You can upload your trained model to your private Model repo (i.e. https://huggingface.co/{your_username}/{model_name}).
|
353 |
-
- You can find your Hugging Face token [here](https://huggingface.co/settings/tokens).
|
354 |
-
''')
|
355 |
-
|
356 |
-
upload_button.click(fn=upload,
|
357 |
-
inputs=[model_name, hf_token],
|
358 |
-
outputs=result)
|
359 |
-
|
360 |
-
return demo
|
361 |
-
|
362 |
-
|
363 |
-
pipe = InferencePipeline()
|
364 |
-
trainer = Trainer()
|
365 |
-
|
366 |
with gr.Blocks(css='style.css') as demo:
|
367 |
if os.getenv('IS_SHARED_UI'):
|
368 |
show_warning(SHARED_UI_WARNING)
|
@@ -374,12 +157,10 @@ with gr.Blocks(css='style.css') as demo:
|
|
374 |
gr.Markdown(DETAILDESCRIPTION)
|
375 |
|
376 |
with gr.Tabs():
|
377 |
-
|
378 |
-
create_training_demo(trainer, pipe)
|
379 |
with gr.TabItem('Test'):
|
380 |
create_inference_demo(pipe)
|
381 |
-
|
382 |
-
create_upload_demo()
|
383 |
|
384 |
demo.queue(default_enabled=False).launch(share=False)
|
385 |
|
|
|
19 |
import gradio as gr
|
20 |
import torch
|
21 |
|
22 |
+
from inference import inference_fn
|
23 |
+
# from inference_custom_diffusion import InferencePipeline
|
24 |
# from trainer import Trainer
|
25 |
# from uploader import upload
|
26 |
|
|
|
70 |
paths = [path.as_posix() for path in paths] # type: ignore
|
71 |
return gr.update(value=paths or None)
|
72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
def find_weight_files() -> list[str]:
|
74 |
curr_dir = pathlib.Path(__file__).parent
|
75 |
paths = sorted(curr_dir.rglob('*.bin'))
|
|
|
85 |
with gr.Blocks() as demo:
|
86 |
with gr.Row():
|
87 |
with gr.Column():
|
88 |
+
model_id = gr.Dropdown(
|
89 |
+
choices=['experiments/painted_on'],
|
90 |
+
value='experiments/painted_on',
|
91 |
+
label='Relation',
|
92 |
visible=True)
|
|
|
|
|
|
|
|
|
93 |
reload_button = gr.Button('Reload Weight List')
|
|
|
|
|
|
|
94 |
prompt = gr.Textbox(
|
95 |
label='Prompt',
|
96 |
max_lines=1,
|
97 |
+
placeholder='Example: "cat <R> stone"')
|
98 |
+
placeholder_string = gr.Textbox(
|
99 |
+
label='Placeholder String',
|
100 |
+
max_lines=1,
|
101 |
+
placeholder='Example: "<R>"')
|
102 |
+
|
103 |
with gr.Accordion('Other Parameters', open=False):
|
104 |
+
guidance_scale = gr.Slider(label='Classifier-Free Guidance Scale',
|
|
|
|
|
|
|
|
|
|
|
105 |
minimum=0,
|
106 |
maximum=50,
|
107 |
step=0.1,
|
108 |
+
value=7.5)
|
109 |
+
num_samples = gr.Slider(label='Batch Size',
|
|
|
|
|
|
|
|
|
|
|
110 |
minimum=0,
|
111 |
maximum=10.,
|
112 |
step=1,
|
113 |
+
value=10)
|
114 |
|
115 |
run_button = gr.Button('Generate')
|
116 |
|
|
|
125 |
reload_button.click(fn=reload_custom_diffusion_weight_list,
|
126 |
inputs=None,
|
127 |
outputs=weight_name)
|
128 |
+
prompt.submit(fn=inference_fn,
|
129 |
inputs=[
|
130 |
+
model_id,
|
|
|
131 |
prompt,
|
132 |
+
placeholder_string,
|
133 |
+
guidance_scale
|
|
|
|
|
|
|
|
|
134 |
],
|
135 |
outputs=result,
|
136 |
queue=False)
|
137 |
+
run_button.click(fn=inference_fn,
|
138 |
+
inputs=[
|
139 |
+
model_id,
|
140 |
+
prompt,
|
141 |
+
placeholder_string,
|
142 |
+
guidance_scale
|
143 |
+
],
|
|
|
|
|
|
|
|
|
|
|
144 |
outputs=result,
|
145 |
queue=False)
|
146 |
return demo
|
147 |
|
148 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
with gr.Blocks(css='style.css') as demo:
|
150 |
if os.getenv('IS_SHARED_UI'):
|
151 |
show_warning(SHARED_UI_WARNING)
|
|
|
157 |
gr.Markdown(DETAILDESCRIPTION)
|
158 |
|
159 |
with gr.Tabs():
|
160 |
+
|
|
|
161 |
with gr.TabItem('Test'):
|
162 |
create_inference_demo(pipe)
|
163 |
+
|
|
|
164 |
|
165 |
demo.queue(default_enabled=False).launch(share=False)
|
166 |
|
inference.py
CHANGED
@@ -12,70 +12,85 @@ import torch
|
|
12 |
from diffusers import StableDiffusionPipeline
|
13 |
sys.path.insert(0, './ReVersion')
|
14 |
|
|
|
|
|
|
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
from diffusers import StableDiffusionPipeline
|
13 |
sys.path.insert(0, './ReVersion')
|
14 |
|
15 |
+
# below are original
|
16 |
+
import os
|
17 |
+
# import argparse
|
18 |
|
19 |
+
# import torch
|
20 |
+
from PIL import Image
|
21 |
+
|
22 |
+
# from diffusers import StableDiffusionPipeline
|
23 |
+
# sys.path.insert(0, './ReVersion')
|
24 |
+
from templates.templates import inference_templates
|
25 |
+
|
26 |
+
import math
|
27 |
+
|
28 |
+
"""
|
29 |
+
Inference script for generating batch results
|
30 |
+
"""
|
31 |
+
|
32 |
+
def make_image_grid(imgs, rows, cols):
|
33 |
+
assert len(imgs) == rows*cols
|
34 |
+
|
35 |
+
w, h = imgs[0].size
|
36 |
+
grid = Image.new('RGB', size=(cols*w, rows*h))
|
37 |
+
grid_w, grid_h = grid.size
|
38 |
+
|
39 |
+
for i, img in enumerate(imgs):
|
40 |
+
grid.paste(img, box=(i%cols*w, i//cols*h))
|
41 |
+
return grid
|
42 |
+
|
43 |
+
|
44 |
+
def inference_fn(
|
45 |
+
model_id,
|
46 |
+
prompt,
|
47 |
+
placeholder_string,
|
48 |
+
num_samples,
|
49 |
+
guidance_scale
|
50 |
+
):
|
51 |
+
|
52 |
+
# create inference pipeline
|
53 |
+
pipe = StableDiffusionPipeline.from_pretrained(model_id,torch_dtype=torch.float16).to("cuda")
|
54 |
+
|
55 |
+
# make directory to save images
|
56 |
+
image_root_folder = os.path.join(model_id, 'inference')
|
57 |
+
os.makedirs(image_root_folder, exist_ok = True)
|
58 |
+
|
59 |
+
if prompt is None and args.template_name is None:
|
60 |
+
raise ValueError("please input a single prompt through'--prompt' or select a batch of prompts using '--template_name'.")
|
61 |
+
|
62 |
+
# single text prompt
|
63 |
+
if prompt is not None:
|
64 |
+
prompt_list = [prompt]
|
65 |
+
else:
|
66 |
+
prompt_list = []
|
67 |
+
|
68 |
+
if args.template_name is not None:
|
69 |
+
# read the selected text prompts for generation
|
70 |
+
prompt_list.extend(inference_templates[args.template_name])
|
71 |
+
|
72 |
+
for prompt in prompt_list:
|
73 |
+
# insert relation prompt <R>
|
74 |
+
prompt = prompt.lower().replace("<r>", "<R>").format(placeholder_string)
|
75 |
+
|
76 |
+
# make sub-folder
|
77 |
+
image_folder = os.path.join(image_root_folder, prompt, 'samples')
|
78 |
+
os.makedirs(image_folder, exist_ok = True)
|
79 |
+
|
80 |
+
# batch generation
|
81 |
+
images = pipe(prompt, num_inference_steps=50, guidance_scale=guidance_scale, num_images_per_prompt=num_samples).images
|
82 |
+
|
83 |
+
# save generated images
|
84 |
+
for idx, image in enumerate(images):
|
85 |
+
image_name = f"{str(idx).zfill(4)}.png"
|
86 |
+
image_path = os.path.join(image_folder, image_name)
|
87 |
+
image.save(image_path)
|
88 |
+
|
89 |
+
# save a grid of images
|
90 |
+
image_grid = make_image_grid(images, rows=2, cols=math.ceil(num_samples/2))
|
91 |
+
image_grid_path = os.path.join(image_root_folder, prompt, f'{prompt}.png')
|
92 |
+
|
93 |
+
return image_grid
|
94 |
+
|
95 |
+
if __name__ == "__main__":
|
96 |
+
main()
|