Spaces:
Sleeping
Sleeping
File size: 22,697 Bytes
5e9cd1d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 |
import pydantic
from pydantic import BaseModel
from typing import List
from fastapi import FastAPI
from pathlib import Path
import asyncio
from configs import (LLM_MODELS, LLM_DEVICE, EMBEDDING_DEVICE,
MODEL_PATH, MODEL_ROOT_PATH, ONLINE_LLM_MODEL, logger, log_verbose,
FSCHAT_MODEL_WORKERS, HTTPX_DEFAULT_TIMEOUT)
import os
from concurrent.futures import ThreadPoolExecutor, as_completed
from langchain.chat_models import ChatOpenAI
from langchain.llms import OpenAI
import httpx
from typing import (
TYPE_CHECKING,
Literal,
Optional,
Callable,
Generator,
Dict,
Any,
Awaitable,
Union,
Tuple
)
import logging
import torch
from server.minx_chat_openai import MinxChatOpenAI
async def wrap_done(fn: Awaitable, event: asyncio.Event):
"""Wrap an awaitable with a event to signal when it's done or an exception is raised."""
try:
await fn
except Exception as e:
logging.exception(e)
msg = f"Caught exception: {e}"
logger.error(f'{e.__class__.__name__}: {msg}',
exc_info=e if log_verbose else None)
finally:
# Signal the aiter to stop.
event.set()
def get_ChatOpenAI(
model_name: str,
temperature: float,
max_tokens: int = None,
streaming: bool = True,
callbacks: List[Callable] = [],
verbose: bool = True,
**kwargs: Any,
) -> ChatOpenAI:
config = get_model_worker_config(model_name)
if model_name == "openai-api":
model_name = config.get("model_name")
ChatOpenAI._get_encoding_model = MinxChatOpenAI.get_encoding_model
model = ChatOpenAI(
streaming=streaming,
verbose=verbose,
callbacks=callbacks,
openai_api_key=config.get("api_key", "EMPTY"),
openai_api_base=config.get("api_base_url", fschat_openai_api_address()),
model_name=model_name,
temperature=temperature,
max_tokens=max_tokens,
openai_proxy=config.get("openai_proxy"),
**kwargs
)
return model
def get_OpenAI(
model_name: str,
temperature: float,
max_tokens: int = None,
streaming: bool = True,
echo: bool = True,
callbacks: List[Callable] = [],
verbose: bool = True,
**kwargs: Any,
) -> OpenAI:
config = get_model_worker_config(model_name)
if model_name == "openai-api":
model_name = config.get("model_name")
model = OpenAI(
streaming=streaming,
verbose=verbose,
callbacks=callbacks,
openai_api_key=config.get("api_key", "EMPTY"),
openai_api_base=config.get("api_base_url", fschat_openai_api_address()),
model_name=model_name,
temperature=temperature,
max_tokens=max_tokens,
openai_proxy=config.get("openai_proxy"),
echo=echo,
**kwargs
)
return model
class BaseResponse(BaseModel):
code: int = pydantic.Field(200, description="API status code")
msg: str = pydantic.Field("success", description="API status message")
data: Any = pydantic.Field(None, description="API data")
class Config:
schema_extra = {
"example": {
"code": 200,
"msg": "success",
}
}
class ListResponse(BaseResponse):
data: List[str] = pydantic.Field(..., description="List of names")
class Config:
schema_extra = {
"example": {
"code": 200,
"msg": "success",
"data": ["doc1.docx", "doc2.pdf", "doc3.txt"],
}
}
class ChatMessage(BaseModel):
question: str = pydantic.Field(..., description="Question text")
response: str = pydantic.Field(..., description="Response text")
history: List[List[str]] = pydantic.Field(..., description="History text")
source_documents: List[str] = pydantic.Field(
..., description="List of source documents and their scores"
)
class Config:
schema_extra = {
"example": {
"question": "工伤保险如何办理?",
"response": "根据已知信息,可以总结如下:\n\n1. 参保单位为员工缴纳工伤保险费,以保障员工在发生工伤时能够获得相应的待遇。\n"
"2. 不同地区的工伤保险缴费规定可能有所不同,需要向当地社保部门咨询以了解具体的缴费标准和规定。\n"
"3. 工伤从业人员及其近亲属需要申请工伤认定,确认享受的待遇资格,并按时缴纳工伤保险费。\n"
"4. 工伤保险待遇包括工伤医疗、康复、辅助器具配置费用、伤残待遇、工亡待遇、一次性工亡补助金等。\n"
"5. 工伤保险待遇领取资格认证包括长期待遇领取人员认证和一次性待遇领取人员认证。\n"
"6. 工伤保险基金支付的待遇项目包括工伤医疗待遇、康复待遇、辅助器具配置费用、一次性工亡补助金、丧葬补助金等。",
"history": [
[
"工伤保险是什么?",
"工伤保险是指用人单位按照国家规定,为本单位的职工和用人单位的其他人员,缴纳工伤保险费,"
"由保险机构按照国家规定的标准,给予工伤保险待遇的社会保险制度。",
]
],
"source_documents": [
"出处 [1] 广州市单位从业的特定人员参加工伤保险办事指引.docx:\n\n\t"
"( 一) 从业单位 (组织) 按“自愿参保”原则, 为未建 立劳动关系的特定从业人员单项参加工伤保险 、缴纳工伤保 险费。",
"出处 [2] ...",
"出处 [3] ...",
],
}
}
def torch_gc():
try:
import torch
if torch.cuda.is_available():
# with torch.cuda.device(DEVICE):
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
elif torch.backends.mps.is_available():
try:
from torch.mps import empty_cache
empty_cache()
except Exception as e:
msg = ("如果您使用的是 macOS 建议将 pytorch 版本升级至 2.0.0 或更高版本,"
"以支持及时清理 torch 产生的内存占用。")
logger.error(f'{e.__class__.__name__}: {msg}',
exc_info=e if log_verbose else None)
except Exception:
...
def run_async(cor):
'''
在同步环境中运行异步代码.
'''
try:
loop = asyncio.get_event_loop()
except:
loop = asyncio.new_event_loop()
return loop.run_until_complete(cor)
def iter_over_async(ait, loop=None):
'''
将异步生成器封装成同步生成器.
'''
ait = ait.__aiter__()
async def get_next():
try:
obj = await ait.__anext__()
return False, obj
except StopAsyncIteration:
return True, None
if loop is None:
try:
loop = asyncio.get_event_loop()
except:
loop = asyncio.new_event_loop()
while True:
done, obj = loop.run_until_complete(get_next())
if done:
break
yield obj
def MakeFastAPIOffline(
app: FastAPI,
static_dir=Path(__file__).parent / "static",
static_url="/static-offline-docs",
docs_url: Optional[str] = "/docs",
redoc_url: Optional[str] = "/redoc",
) -> None:
"""patch the FastAPI obj that doesn't rely on CDN for the documentation page"""
from fastapi import Request
from fastapi.openapi.docs import (
get_redoc_html,
get_swagger_ui_html,
get_swagger_ui_oauth2_redirect_html,
)
from fastapi.staticfiles import StaticFiles
from starlette.responses import HTMLResponse
openapi_url = app.openapi_url
swagger_ui_oauth2_redirect_url = app.swagger_ui_oauth2_redirect_url
def remove_route(url: str) -> None:
'''
remove original route from app
'''
index = None
for i, r in enumerate(app.routes):
if r.path.lower() == url.lower():
index = i
break
if isinstance(index, int):
app.routes.pop(index)
# Set up static file mount
app.mount(
static_url,
StaticFiles(directory=Path(static_dir).as_posix()),
name="static-offline-docs",
)
if docs_url is not None:
remove_route(docs_url)
remove_route(swagger_ui_oauth2_redirect_url)
# Define the doc and redoc pages, pointing at the right files
@app.get(docs_url, include_in_schema=False)
async def custom_swagger_ui_html(request: Request) -> HTMLResponse:
root = request.scope.get("root_path")
favicon = f"{root}{static_url}/favicon.png"
return get_swagger_ui_html(
openapi_url=f"{root}{openapi_url}",
title=app.title + " - Swagger UI",
oauth2_redirect_url=swagger_ui_oauth2_redirect_url,
swagger_js_url=f"{root}{static_url}/swagger-ui-bundle.js",
swagger_css_url=f"{root}{static_url}/swagger-ui.css",
swagger_favicon_url=favicon,
)
@app.get(swagger_ui_oauth2_redirect_url, include_in_schema=False)
async def swagger_ui_redirect() -> HTMLResponse:
return get_swagger_ui_oauth2_redirect_html()
if redoc_url is not None:
remove_route(redoc_url)
@app.get(redoc_url, include_in_schema=False)
async def redoc_html(request: Request) -> HTMLResponse:
root = request.scope.get("root_path")
favicon = f"{root}{static_url}/favicon.png"
return get_redoc_html(
openapi_url=f"{root}{openapi_url}",
title=app.title + " - ReDoc",
redoc_js_url=f"{root}{static_url}/redoc.standalone.js",
with_google_fonts=False,
redoc_favicon_url=favicon,
)
# 从model_config中获取模型信息
def list_embed_models() -> List[str]:
'''
get names of configured embedding models
'''
return list(MODEL_PATH["embed_model"])
def list_config_llm_models() -> Dict[str, Dict]:
'''
get configured llm models with different types.
return {config_type: {model_name: config}, ...}
'''
workers = FSCHAT_MODEL_WORKERS.copy()
workers.pop("default", None)
return {
"local": MODEL_PATH["llm_model"].copy(),
"online": ONLINE_LLM_MODEL.copy(),
"worker": workers,
}
def get_model_path(model_name: str, type: str = None) -> Optional[str]:
if type in MODEL_PATH:
paths = MODEL_PATH[type]
else:
paths = {}
for v in MODEL_PATH.values():
paths.update(v)
if path_str := paths.get(model_name): # 以 "chatglm-6b": "THUDM/chatglm-6b-new" 为例,以下都是支持的路径
path = Path(path_str)
if path.is_dir(): # 任意绝对路径
return str(path)
root_path = Path(MODEL_ROOT_PATH)
if root_path.is_dir():
path = root_path / model_name
if path.is_dir(): # use key, {MODEL_ROOT_PATH}/chatglm-6b
return str(path)
path = root_path / path_str
if path.is_dir(): # use value, {MODEL_ROOT_PATH}/THUDM/chatglm-6b-new
return str(path)
path = root_path / path_str.split("/")[-1]
if path.is_dir(): # use value split by "/", {MODEL_ROOT_PATH}/chatglm-6b-new
return str(path)
return path_str # THUDM/chatglm06b
# 从server_config中获取服务信息
def get_model_worker_config(model_name: str = None) -> dict:
'''
加载model worker的配置项。
优先级:FSCHAT_MODEL_WORKERS[model_name] > ONLINE_LLM_MODEL[model_name] > FSCHAT_MODEL_WORKERS["default"]
'''
from configs.model_config import ONLINE_LLM_MODEL, MODEL_PATH
from configs.server_config import FSCHAT_MODEL_WORKERS
from server import model_workers
config = FSCHAT_MODEL_WORKERS.get("default", {}).copy()
config.update(ONLINE_LLM_MODEL.get(model_name, {}).copy())
config.update(FSCHAT_MODEL_WORKERS.get(model_name, {}).copy())
if model_name in ONLINE_LLM_MODEL:
config["online_api"] = True
if provider := config.get("provider"):
try:
config["worker_class"] = getattr(model_workers, provider)
except Exception as e:
msg = f"在线模型 ‘{model_name}’ 的provider没有正确配置"
logger.error(f'{e.__class__.__name__}: {msg}',
exc_info=e if log_verbose else None)
# 本地模型
if model_name in MODEL_PATH["llm_model"]:
path = get_model_path(model_name)
config["model_path"] = path
if path and os.path.isdir(path):
config["model_path_exists"] = True
config["device"] = llm_device(config.get("device"))
return config
def get_all_model_worker_configs() -> dict:
result = {}
model_names = set(FSCHAT_MODEL_WORKERS.keys())
for name in model_names:
if name != "default":
result[name] = get_model_worker_config(name)
return result
def fschat_controller_address() -> str:
from configs.server_config import FSCHAT_CONTROLLER
host = FSCHAT_CONTROLLER["host"]
if host == "0.0.0.0":
host = "127.0.0.1"
port = FSCHAT_CONTROLLER["port"]
return f"http://{host}:{port}"
def fschat_model_worker_address(model_name: str = LLM_MODELS[0]) -> str:
if model := get_model_worker_config(model_name):
host = model["host"]
if host == "0.0.0.0":
host = "127.0.0.1"
port = model["port"]
return f"http://{host}:{port}"
return ""
def fschat_openai_api_address() -> str:
from configs.server_config import FSCHAT_OPENAI_API
host = FSCHAT_OPENAI_API["host"]
if host == "0.0.0.0":
host = "127.0.0.1"
port = FSCHAT_OPENAI_API["port"]
return f"http://{host}:{port}/v1"
def api_address() -> str:
from configs.server_config import API_SERVER
host = API_SERVER["host"]
if host == "0.0.0.0":
host = "127.0.0.1"
port = API_SERVER["port"]
return f"http://{host}:{port}"
def webui_address() -> str:
from configs.server_config import WEBUI_SERVER
host = WEBUI_SERVER["host"]
port = WEBUI_SERVER["port"]
return f"http://{host}:{port}"
def get_prompt_template(type: str, name: str) -> Optional[str]:
'''
从prompt_config中加载模板内容
type: "llm_chat","agent_chat","knowledge_base_chat","search_engine_chat"的其中一种,如果有新功能,应该进行加入。
'''
from configs import prompt_config
import importlib
importlib.reload(prompt_config)
return prompt_config.PROMPT_TEMPLATES[type].get(name)
def set_httpx_config(
timeout: float = HTTPX_DEFAULT_TIMEOUT,
proxy: Union[str, Dict] = None,
):
'''
设置httpx默认timeout。httpx默认timeout是5秒,在请求LLM回答时不够用。
将本项目相关服务加入无代理列表,避免fastchat的服务器请求错误。(windows下无效)
对于chatgpt等在线API,如要使用代理需要手动配置。搜索引擎的代理如何处置还需考虑。
'''
import httpx
import os
httpx._config.DEFAULT_TIMEOUT_CONFIG.connect = timeout
httpx._config.DEFAULT_TIMEOUT_CONFIG.read = timeout
httpx._config.DEFAULT_TIMEOUT_CONFIG.write = timeout
# 在进程范围内设置系统级代理
proxies = {}
if isinstance(proxy, str):
for n in ["http", "https", "all"]:
proxies[n + "_proxy"] = proxy
elif isinstance(proxy, dict):
for n in ["http", "https", "all"]:
if p := proxy.get(n):
proxies[n + "_proxy"] = p
elif p := proxy.get(n + "_proxy"):
proxies[n + "_proxy"] = p
for k, v in proxies.items():
os.environ[k] = v
# set host to bypass proxy
no_proxy = [x.strip() for x in os.environ.get("no_proxy", "").split(",") if x.strip()]
no_proxy += [
# do not use proxy for locahost
"http://127.0.0.1",
"http://localhost",
]
# do not use proxy for user deployed fastchat servers
for x in [
fschat_controller_address(),
fschat_model_worker_address(),
fschat_openai_api_address(),
]:
host = ":".join(x.split(":")[:2])
if host not in no_proxy:
no_proxy.append(host)
os.environ["NO_PROXY"] = ",".join(no_proxy)
def _get_proxies():
return proxies
import urllib.request
urllib.request.getproxies = _get_proxies
def detect_device() -> Literal["cuda", "mps", "cpu"]:
try:
import torch
if torch.cuda.is_available():
return "cuda"
if torch.backends.mps.is_available():
return "mps"
except:
pass
return "cpu"
def llm_device(device: str = None) -> Literal["cuda", "mps", "cpu"]:
device = device or LLM_DEVICE
if device not in ["cuda", "mps", "cpu"]:
device = detect_device()
return device
def embedding_device(device: str = None) -> Literal["cuda", "mps", "cpu"]:
device = device or EMBEDDING_DEVICE
if device not in ["cuda", "mps", "cpu"]:
device = detect_device()
return device
def run_in_thread_pool(
func: Callable,
params: List[Dict] = [],
) -> Generator:
'''
在线程池中批量运行任务,并将运行结果以生成器的形式返回。
请确保任务中的所有操作是线程安全的,任务函数请全部使用关键字参数。
'''
tasks = []
with ThreadPoolExecutor() as pool:
for kwargs in params:
thread = pool.submit(func, **kwargs)
tasks.append(thread)
for obj in as_completed(tasks):
yield obj.result()
def get_httpx_client(
use_async: bool = False,
proxies: Union[str, Dict] = None,
timeout: float = HTTPX_DEFAULT_TIMEOUT,
**kwargs,
) -> Union[httpx.Client, httpx.AsyncClient]:
'''
helper to get httpx client with default proxies that bypass local addesses.
'''
default_proxies = {
# do not use proxy for locahost
"all://127.0.0.1": None,
"all://localhost": None,
}
# do not use proxy for user deployed fastchat servers
for x in [
fschat_controller_address(),
fschat_model_worker_address(),
fschat_openai_api_address(),
]:
host = ":".join(x.split(":")[:2])
default_proxies.update({host: None})
# get proxies from system envionrent
# proxy not str empty string, None, False, 0, [] or {}
default_proxies.update({
"http://": (os.environ.get("http_proxy")
if os.environ.get("http_proxy") and len(os.environ.get("http_proxy").strip())
else None),
"https://": (os.environ.get("https_proxy")
if os.environ.get("https_proxy") and len(os.environ.get("https_proxy").strip())
else None),
"all://": (os.environ.get("all_proxy")
if os.environ.get("all_proxy") and len(os.environ.get("all_proxy").strip())
else None),
})
for host in os.environ.get("no_proxy", "").split(","):
if host := host.strip():
# default_proxies.update({host: None}) # Origin code
default_proxies.update({'all://' + host: None}) # PR 1838 fix, if not add 'all://', httpx will raise error
# merge default proxies with user provided proxies
if isinstance(proxies, str):
proxies = {"all://": proxies}
if isinstance(proxies, dict):
default_proxies.update(proxies)
# construct Client
kwargs.update(timeout=timeout, proxies=default_proxies)
if log_verbose:
logger.info(f'{get_httpx_client.__class__.__name__}:kwargs: {kwargs}')
if use_async:
return httpx.AsyncClient(**kwargs)
else:
return httpx.Client(**kwargs)
def get_server_configs() -> Dict:
'''
获取configs中的原始配置项,供前端使用
'''
from configs.kb_config import (
DEFAULT_KNOWLEDGE_BASE,
DEFAULT_SEARCH_ENGINE,
DEFAULT_VS_TYPE,
CHUNK_SIZE,
OVERLAP_SIZE,
SCORE_THRESHOLD,
VECTOR_SEARCH_TOP_K,
SEARCH_ENGINE_TOP_K,
ZH_TITLE_ENHANCE,
text_splitter_dict,
TEXT_SPLITTER_NAME,
)
from configs.model_config import (
LLM_MODELS,
HISTORY_LEN,
TEMPERATURE,
)
from configs.prompt_config import PROMPT_TEMPLATES
_custom = {
"controller_address": fschat_controller_address(),
"openai_api_address": fschat_openai_api_address(),
"api_address": api_address(),
}
return {**{k: v for k, v in locals().items() if k[0] != "_"}, **_custom}
def list_online_embed_models() -> List[str]:
from server import model_workers
ret = []
for k, v in list_config_llm_models()["online"].items():
if provider := v.get("provider"):
worker_class = getattr(model_workers, provider, None)
if worker_class is not None and worker_class.can_embedding():
ret.append(k)
return ret
def load_local_embeddings(model: str = None, device: str = embedding_device()):
'''
从缓存中加载embeddings,可以避免多线程时竞争加载。
'''
from server.knowledge_base.kb_cache.base import embeddings_pool
from configs import EMBEDDING_MODEL
model = model or EMBEDDING_MODEL
return embeddings_pool.load_embeddings(model=model, device=device)
def get_temp_dir(id: str = None) -> Tuple[str, str]:
'''
创建一个临时目录,返回(路径,文件夹名称)
'''
from configs.basic_config import BASE_TEMP_DIR
import tempfile
if id is not None: # 如果指定的临时目录已存在,直接返回
path = os.path.join(BASE_TEMP_DIR, id)
if os.path.isdir(path):
return path, id
path = tempfile.mkdtemp(dir=BASE_TEMP_DIR)
return path, os.path.basename(path)
|