|
import time |
|
import streamlit as st |
|
|
|
import os |
|
import torch |
|
import datetime |
|
import numpy as np |
|
import soundfile |
|
from wavmark.utils import file_reader |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def create_default_value(): |
|
if "def_value" not in st.session_state: |
|
def_val_npy = np.random.choice([0, 1], size=32 - len_start_bit) |
|
def_val_str = "".join([str(i) for i in def_val_npy]) |
|
st.session_state.def_value = def_val_str |
|
|
|
|
|
def main(): |
|
create_default_value() |
|
|
|
|
|
|
|
markdown_text = """ |
|
# MDS07 |
|
[AudioSeal](https://github.com/jcha0155/AudioSealEnhanced) is the next-generation watermarking tool driven by AI. |
|
You can upload an audio file and encode a custom 16-bit watermark or perform decoding from a watermarked audio. |
|
|
|
This page is for demonstration usage and only process **the first minute** of the audio. |
|
If you have longer files for processing, we recommend using [our python toolkit](https://github.com/jcha0155/AudioSealEnhanced). |
|
""" |
|
|
|
|
|
st.markdown(markdown_text) |
|
|
|
audio_file = st.file_uploader("Upload Audio", type=["wav", "mp3"], accept_multiple_files=False) |
|
|
|
if audio_file: |
|
|
|
tmp_input_audio_file = os.path.join("/tmp/", audio_file.name) |
|
with open(tmp_input_audio_file, "wb") as f: |
|
f.write(audio_file.getbuffer()) |
|
|
|
|
|
|
|
|
|
action = st.selectbox("Select Action", ["Add Watermark", "Decode Watermark"]) |
|
|
|
if action == "Add Watermark": |
|
watermark_text = st.text_input("The watermark (0, 1 list of length-16):", value=st.session_state.def_value) |
|
add_watermark_button = st.button("Add Watermark", key="add_watermark_btn") |
|
if add_watermark_button: |
|
if audio_file and watermark_text: |
|
with st.spinner("Adding Watermark..."): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
default_sr = 16000 |
|
max_second_encode = 60 |
|
max_second_decode = 30 |
|
len_start_bit = 16 |
|
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') |
|
|
|
main() |
|
|
|
|
|
|
|
|
|
|