Update app.py
Browse files
app.py
CHANGED
@@ -12,6 +12,8 @@ import torchaudio
|
|
12 |
from pydub import AudioSegment
|
13 |
import io
|
14 |
import librosa
|
|
|
|
|
15 |
#from torchaudio.io import CodecConfig
|
16 |
# import numpy
|
17 |
|
@@ -113,38 +115,24 @@ def main():
|
|
113 |
# Define CodecConfig for MP3 compression
|
114 |
#codec_config = CodecConfig(format="mp3", compression=128) # 128 kbps for MP3
|
115 |
#wav3, sample_rate = librosa.load("test.mp3")
|
116 |
-
|
117 |
-
|
|
|
|
|
|
|
|
|
118 |
#RuntimeError: Could not infer dtype of numpy.float32
|
119 |
#wav = torch.tensor(wav3).float() / 32768.0
|
120 |
|
121 |
#RuntimeError: Numpy is not available
|
122 |
-
wav = torch.from_numpy(wav3) #/32768.0
|
123 |
-
wav = wav.unsqueeze(0).unsqueeze(0)
|
124 |
st.markdown("Before unsqueeze mp3")
|
125 |
st.markdown(wav)
|
126 |
|
127 |
#Unsqueeze for line 176
|
128 |
# wav= wav.unsqueeze(0)
|
129 |
|
130 |
-
# #2nd way
|
131 |
-
# # Convert the tensor to a byte-like object in WAV format
|
132 |
-
# with io.BytesIO() as buffer:
|
133 |
-
# # Save the audio to the buffer using torchaudio
|
134 |
-
# torchaudio.save(buffer, wav, default_sr, format="wav")
|
135 |
-
# # Get the byte data from the buffer
|
136 |
-
# wav = buffer.getvalue()
|
137 |
-
# # Play the audio file (WAV format)
|
138 |
-
# st.audio(wav, format="audio/wav")
|
139 |
-
|
140 |
-
# wav, sample_rate = torchaudio.load(audio_file, format="mp3/wav")
|
141 |
-
# st.markdown("SR")
|
142 |
-
# st.markdown(sample_rate)
|
143 |
-
# st.markdown("after unsqueeze wav or mp3")
|
144 |
-
# st.markdown(wav)
|
145 |
-
# 展示文件到页面上
|
146 |
-
# st.audio(tmp_input_audio_file, format="audio/wav")
|
147 |
-
|
148 |
action = st.selectbox("Select Action", ["Add Watermark", "Decode Watermark"])
|
149 |
|
150 |
if action == "Add Watermark":
|
|
|
12 |
from pydub import AudioSegment
|
13 |
import io
|
14 |
import librosa
|
15 |
+
import ffmpeg
|
16 |
+
|
17 |
#from torchaudio.io import CodecConfig
|
18 |
# import numpy
|
19 |
|
|
|
115 |
# Define CodecConfig for MP3 compression
|
116 |
#codec_config = CodecConfig(format="mp3", compression=128) # 128 kbps for MP3
|
117 |
#wav3, sample_rate = librosa.load("test.mp3")
|
118 |
+
|
119 |
+
# Convert input MP3 to WAV
|
120 |
+
ffmpeg.input("test.mp3").output("test.wav").run()
|
121 |
+
wav3, sample_rate = torchaudio.load("test.wav")
|
122 |
+
wav= wav3.unsqueeze(0)
|
123 |
+
file_extension =".wav"
|
124 |
#RuntimeError: Could not infer dtype of numpy.float32
|
125 |
#wav = torch.tensor(wav3).float() / 32768.0
|
126 |
|
127 |
#RuntimeError: Numpy is not available
|
128 |
+
# wav = torch.from_numpy(wav3) #/32768.0
|
129 |
+
# wav = wav.unsqueeze(0).unsqueeze(0)
|
130 |
st.markdown("Before unsqueeze mp3")
|
131 |
st.markdown(wav)
|
132 |
|
133 |
#Unsqueeze for line 176
|
134 |
# wav= wav.unsqueeze(0)
|
135 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
action = st.selectbox("Select Action", ["Add Watermark", "Decode Watermark"])
|
137 |
|
138 |
if action == "Add Watermark":
|