Update app.py
Browse files
app.py
CHANGED
@@ -59,64 +59,44 @@ def main():
|
|
59 |
st.markdown(markdown_text)
|
60 |
|
61 |
audio_file = st.file_uploader("Upload Audio", type=["wav", "mp3"], accept_multiple_files=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
-
|
64 |
-
# 保存文件到本地:
|
65 |
-
# tmp_input_audio_file = os.path.join("/tmp/", audio_file.name)
|
66 |
-
# st.markdown(tmp_input_audio_file)
|
67 |
-
# with open(tmp_input_audio_file, "wb") as f:
|
68 |
-
# f.write(audio_file.getbuffer())
|
69 |
-
# st.audio(tmp_input_audio_file, format="mp3/wav")
|
70 |
|
|
|
|
|
|
|
71 |
|
72 |
-
|
73 |
-
#audio_path = " audio_file.name"
|
74 |
-
|
75 |
-
# audio, sr = torchaudio.load(audio_file)
|
76 |
-
# st.audio(audio_file, format="audio/mpeg")
|
77 |
-
# audio= audio.unsqueeze(0)
|
78 |
-
|
79 |
-
# st.markdown("SR")
|
80 |
-
# st.markdown(sr)
|
81 |
-
# st.markdown("after unsqueeze wav or mp3")
|
82 |
-
# st.markdown(audio)
|
83 |
-
|
84 |
-
#2nd attempt
|
85 |
-
# Save file to local storage
|
86 |
-
tmp_input_audio_file = os.path.join("/tmp/", audio_file.name)
|
87 |
-
file_extension = os.path.splitext(tmp_input_audio_file)[1].lower()
|
88 |
-
#st.markdown(file_extension)
|
89 |
-
if file_extension in [".wav", ".flac"]:
|
90 |
-
with open("test.wav", "wb") as f:
|
91 |
-
f.write(audio_file.getbuffer())
|
92 |
-
|
93 |
-
st.audio("test.wav", format="audio/wav")
|
94 |
-
|
95 |
-
elif file_extension == ".mp3":
|
96 |
-
with open("test.mp3", "wb") as f:
|
97 |
-
f.write(audio_file.getbuffer())
|
98 |
-
|
99 |
-
st.audio("test.mp3", format="audio/mpeg")
|
100 |
|
101 |
#Load the WAV file using torchaudio
|
102 |
-
|
103 |
-
|
104 |
# st.markdown("Before unsquueze wav")
|
105 |
# st.markdown(wav)
|
106 |
-
|
107 |
#Unsqueeze for line 176
|
108 |
-
|
109 |
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
|
114 |
# Export it as a WAV file
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
|
121 |
#RuntimeError: Could not infer dtype of numpy.float32
|
122 |
#wav = torch.tensor(wav3).float() / 32768.0
|
@@ -130,15 +110,15 @@ def main():
|
|
130 |
#Unsqueeze for line 176
|
131 |
# wav= wav.unsqueeze(0)
|
132 |
|
133 |
-
|
134 |
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
#wav = my_read_file(wav,max_second_encode)
|
143 |
|
144 |
#1st attempt
|
@@ -154,84 +134,216 @@ def main():
|
|
154 |
#st.markdown(shape)
|
155 |
|
156 |
#st.markdown(squeeze)
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
|
196 |
-
|
197 |
-
|
198 |
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
|
207 |
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
|
236 |
|
237 |
if __name__ == "__main__":
|
|
|
59 |
st.markdown(markdown_text)
|
60 |
|
61 |
audio_file = st.file_uploader("Upload Audio", type=["wav", "mp3"], accept_multiple_files=False)
|
62 |
+
try:
|
63 |
+
if audio_file:
|
64 |
+
#2nd attempt
|
65 |
+
# Save file to local storage
|
66 |
+
tmp_input_audio_file = os.path.join("/tmp/", audio_file.name)
|
67 |
+
file_extension = os.path.splitext(tmp_input_audio_file)[1].lower()
|
68 |
+
#st.markdown(file_extension)
|
69 |
+
if file_extension in [".wav", ".flac"]:
|
70 |
+
with open("test.wav", "wb") as f:
|
71 |
+
f.write(audio_file.getbuffer())
|
72 |
|
73 |
+
st.audio("test.wav", format="audio/wav")
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
+
elif file_extension == ".mp3":
|
76 |
+
with open("test.mp3", "wb") as f:
|
77 |
+
f.write(audio_file.getbuffer())
|
78 |
|
79 |
+
st.audio("test.mp3", format="audio/mpeg")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
#Load the WAV file using torchaudio
|
82 |
+
if file_extension in [".wav", ".flac"]:
|
83 |
+
wav, sample_rate = torchaudio.load("test.wav")
|
84 |
# st.markdown("Before unsquueze wav")
|
85 |
# st.markdown(wav)
|
86 |
+
file_extension_ori =".wav"
|
87 |
#Unsqueeze for line 176
|
88 |
+
wav= wav.unsqueeze(0)
|
89 |
|
90 |
+
elif file_extension == ".mp3":
|
91 |
+
# Load an MP3 file
|
92 |
+
audio = AudioSegment.from_mp3("test.mp3")
|
93 |
|
94 |
# Export it as a WAV file
|
95 |
+
audio.export("test.wav", format="wav")
|
96 |
+
wav3, sample_rate = torchaudio.load("test.wav")
|
97 |
+
wav= wav3.unsqueeze(0)
|
98 |
+
file_extension_ori =".mp3"
|
99 |
+
file_extension =".wav"
|
100 |
|
101 |
#RuntimeError: Could not infer dtype of numpy.float32
|
102 |
#wav = torch.tensor(wav3).float() / 32768.0
|
|
|
110 |
#Unsqueeze for line 176
|
111 |
# wav= wav.unsqueeze(0)
|
112 |
|
113 |
+
action = st.selectbox("Select Action", ["Add Watermark", "Detect Watermark"])
|
114 |
|
115 |
+
if action == "Add Watermark":
|
116 |
+
#watermark_text = st.text_input("The watermark (0, 1 list of length-16):", value=st.session_state.def_value)
|
117 |
+
add_watermark_button = st.button("Add Watermark", key="add_watermark_btn")
|
118 |
+
if add_watermark_button: # 点击按钮后执行的
|
119 |
+
#if audio_file and watermark_text:
|
120 |
+
if audio_file:
|
121 |
+
with st.spinner("Adding Watermark..."):
|
122 |
#wav = my_read_file(wav,max_second_encode)
|
123 |
|
124 |
#1st attempt
|
|
|
134 |
#st.markdown(shape)
|
135 |
|
136 |
#st.markdown(squeeze)
|
137 |
+
if file_extension_ori in [".wav", ".flac"]:
|
138 |
+
torchaudio.save("output.wav", squeeze, default_sr, bits_per_sample=16)
|
139 |
+
watermarked_wav = torchaudio.save("output.wav", squeeze, default_sr, bits_per_sample=16)
|
140 |
+
|
141 |
+
st.audio("output.wav", format="audio/wav")
|
142 |
+
|
143 |
+
with open("output.wav", "rb") as file:
|
144 |
+
#file.read()
|
145 |
+
#file.write(watermarked_wav.getbuffer())
|
146 |
+
binary_data = file.read()
|
147 |
+
btn = st.download_button(
|
148 |
+
label="Download watermarked audio",
|
149 |
+
data=binary_data,
|
150 |
+
file_name="output.wav",
|
151 |
+
mime="audio/wav",
|
152 |
+
)
|
153 |
+
|
154 |
+
|
155 |
+
elif file_extension_ori == ".mp3":
|
156 |
+
torchaudio.save("output.wav", squeeze, default_sr)
|
157 |
+
watermarked_mp3 = torchaudio.save("output.wav", squeeze, default_sr)
|
158 |
+
audio = AudioSegment.from_wav("output.wav")
|
159 |
+
|
160 |
+
# Export as MP3
|
161 |
+
audio.export("output.mp3", format="mp3")
|
162 |
+
st.audio("output.mp3", format="audio/mpeg")
|
163 |
+
|
164 |
+
with open("output.mp3", "rb") as file:
|
165 |
+
#file.write(watermarked_wav.getbuffer())
|
166 |
+
binary_data = file.read()
|
167 |
+
st.download_button(
|
168 |
+
label="Download watermarked audio",
|
169 |
+
data=binary_data,
|
170 |
+
file_name="output.mp3",
|
171 |
+
mime="audio/mpeg",
|
172 |
+
except error:
|
173 |
+
st.error("Please input audio with one channel (mono-channel)")
|
174 |
+
|
175 |
+
# if audio_file:
|
176 |
+
# # 保存文件到本地:
|
177 |
+
# # tmp_input_audio_file = os.path.join("/tmp/", audio_file.name)
|
178 |
+
# # st.markdown(tmp_input_audio_file)
|
179 |
+
# # with open(tmp_input_audio_file, "wb") as f:
|
180 |
+
# # f.write(audio_file.getbuffer())
|
181 |
+
# # st.audio(tmp_input_audio_file, format="mp3/wav")
|
182 |
+
|
183 |
+
|
184 |
+
# #1st attempt
|
185 |
+
# #audio_path = " audio_file.name"
|
186 |
+
|
187 |
+
# # audio, sr = torchaudio.load(audio_file)
|
188 |
+
# # st.audio(audio_file, format="audio/mpeg")
|
189 |
+
# # audio= audio.unsqueeze(0)
|
190 |
+
|
191 |
+
# # st.markdown("SR")
|
192 |
+
# # st.markdown(sr)
|
193 |
+
# # st.markdown("after unsqueeze wav or mp3")
|
194 |
+
# # st.markdown(audio)
|
195 |
+
|
196 |
+
# #2nd attempt
|
197 |
+
# # Save file to local storage
|
198 |
+
# tmp_input_audio_file = os.path.join("/tmp/", audio_file.name)
|
199 |
+
# file_extension = os.path.splitext(tmp_input_audio_file)[1].lower()
|
200 |
+
# #st.markdown(file_extension)
|
201 |
+
# if file_extension in [".wav", ".flac"]:
|
202 |
+
# with open("test.wav", "wb") as f:
|
203 |
+
# f.write(audio_file.getbuffer())
|
204 |
+
|
205 |
+
# st.audio("test.wav", format="audio/wav")
|
206 |
+
|
207 |
+
# elif file_extension == ".mp3":
|
208 |
+
# with open("test.mp3", "wb") as f:
|
209 |
+
# f.write(audio_file.getbuffer())
|
210 |
+
|
211 |
+
# st.audio("test.mp3", format="audio/mpeg")
|
212 |
+
|
213 |
+
# #Load the WAV file using torchaudio
|
214 |
+
# if file_extension in [".wav", ".flac"]:
|
215 |
+
# wav, sample_rate = torchaudio.load("test.wav")
|
216 |
+
# # st.markdown("Before unsquueze wav")
|
217 |
+
# # st.markdown(wav)
|
218 |
+
# file_extension_ori =".wav"
|
219 |
+
# #Unsqueeze for line 176
|
220 |
+
# wav= wav.unsqueeze(0)
|
221 |
+
|
222 |
+
# elif file_extension == ".mp3":
|
223 |
+
# # Load an MP3 file
|
224 |
+
# audio = AudioSegment.from_mp3("test.mp3")
|
225 |
+
|
226 |
+
# # Export it as a WAV file
|
227 |
+
# audio.export("test.wav", format="wav")
|
228 |
+
# wav3, sample_rate = torchaudio.load("test.wav")
|
229 |
+
# wav= wav3.unsqueeze(0)
|
230 |
+
# file_extension_ori =".mp3"
|
231 |
+
# file_extension =".wav"
|
232 |
+
|
233 |
+
# #RuntimeError: Could not infer dtype of numpy.float32
|
234 |
+
# #wav = torch.tensor(wav3).float() / 32768.0
|
235 |
+
|
236 |
+
# #RuntimeError: Numpy is not available
|
237 |
+
# # wav = torch.from_numpy(wav3) #/32768.0
|
238 |
+
# # wav = wav.unsqueeze(0).unsqueeze(0)
|
239 |
+
# # st.markdown("Before unsqueeze mp3")
|
240 |
+
# # st.markdown(wav)
|
241 |
+
|
242 |
+
# #Unsqueeze for line 176
|
243 |
+
# # wav= wav.unsqueeze(0)
|
244 |
+
|
245 |
+
# action = st.selectbox("Select Action", ["Add Watermark", "Detect Watermark"])
|
246 |
+
|
247 |
+
# if action == "Add Watermark":
|
248 |
+
# #watermark_text = st.text_input("The watermark (0, 1 list of length-16):", value=st.session_state.def_value)
|
249 |
+
# add_watermark_button = st.button("Add Watermark", key="add_watermark_btn")
|
250 |
+
# if add_watermark_button: # 点击按钮后执行的
|
251 |
+
# #if audio_file and watermark_text:
|
252 |
+
# if audio_file:
|
253 |
+
# with st.spinner("Adding Watermark..."):
|
254 |
+
# #wav = my_read_file(wav,max_second_encode)
|
255 |
+
|
256 |
+
# #1st attempt
|
257 |
+
# watermark = model.get_watermark(wav, default_sr)
|
258 |
+
# watermarked_audio = wav + watermark
|
259 |
+
# print(watermarked_audio.size())
|
260 |
+
# size = watermarked_audio.size()
|
261 |
+
# #st.markdown(size)
|
262 |
+
|
263 |
+
# print(watermarked_audio.squeeze())
|
264 |
+
# squeeze = watermarked_audio.squeeze(1)
|
265 |
+
# shape = squeeze.size()
|
266 |
+
# #st.markdown(shape)
|
267 |
+
|
268 |
+
# #st.markdown(squeeze)
|
269 |
+
# if file_extension_ori in [".wav", ".flac"]:
|
270 |
+
# torchaudio.save("output.wav", squeeze, default_sr, bits_per_sample=16)
|
271 |
+
# watermarked_wav = torchaudio.save("output.wav", squeeze, default_sr, bits_per_sample=16)
|
272 |
+
|
273 |
+
# st.audio("output.wav", format="audio/wav")
|
274 |
+
|
275 |
+
# with open("output.wav", "rb") as file:
|
276 |
+
# #file.read()
|
277 |
+
# #file.write(watermarked_wav.getbuffer())
|
278 |
+
# binary_data = file.read()
|
279 |
+
# btn = st.download_button(
|
280 |
+
# label="Download watermarked audio",
|
281 |
+
# data=binary_data,
|
282 |
+
# file_name="output.wav",
|
283 |
+
# mime="audio/wav",
|
284 |
+
# )
|
285 |
+
|
286 |
+
|
287 |
+
# elif file_extension_ori == ".mp3":
|
288 |
+
# torchaudio.save("output.wav", squeeze, default_sr)
|
289 |
+
# watermarked_mp3 = torchaudio.save("output.wav", squeeze, default_sr)
|
290 |
+
# audio = AudioSegment.from_wav("output.wav")
|
291 |
+
|
292 |
+
# # Export as MP3
|
293 |
+
# audio.export("output.mp3", format="mp3")
|
294 |
+
# st.audio("output.mp3", format="audio/mpeg")
|
295 |
|
296 |
+
# with open("output.mp3", "rb") as file:
|
297 |
+
# #file.write(watermarked_wav.getbuffer())
|
298 |
+
# binary_data = file.read()
|
299 |
+
# st.download_button(
|
300 |
+
# label="Download watermarked audio",
|
301 |
+
# data=binary_data,
|
302 |
+
# file_name="output.mp3",
|
303 |
+
# mime="audio/mpeg",
|
304 |
+
# )
|
305 |
+
# # except RuntimeError:
|
306 |
+
# # st.error("Please input audio with one channel (mono-channel)")
|
307 |
|
308 |
+
# elif action == "Detect Watermark":
|
309 |
+
# detect_watermark_button = st.button("Detect Watermark", key="detect_watermark_btn")
|
310 |
|
311 |
+
# # if audio_file:
|
312 |
+
# # #1st attempt
|
313 |
+
# # watermark = model.get_watermark(wav, default_sr)
|
314 |
+
# # watermarked_audio = wav + watermark
|
315 |
+
# # print(watermarked_audio.size())
|
316 |
+
# # size = watermarked_audio.size()
|
317 |
+
# # #st.markdown(size)
|
318 |
|
319 |
|
320 |
+
# if detect_watermark_button:
|
321 |
+
# with st.spinner("Detecting..."):
|
322 |
+
# # result, message = detector.detect_watermark(watermarked_audio, sample_rate=default_sr, message_threshold=0.5)
|
323 |
+
# # st.markdown("Probability of audio being watermarked: ")
|
324 |
+
# # st.markdown(result)
|
325 |
+
# # st.markdown("This is likely a watermarked audio!")
|
326 |
+
# # print(f"\nThis is likely a watermarked audio: {result}")
|
327 |
+
|
328 |
+
# #Run on an unwatermarked audio
|
329 |
+
|
330 |
+
# if file_extension in [".wav", ".flac"]:
|
331 |
+
# wav, sample_rate = torchaudio.load("test.wav")
|
332 |
+
# wav= wav.unsqueeze(0)
|
333 |
+
|
334 |
+
# elif file_extension == ".mp3":
|
335 |
+
# # Load an MP3 file
|
336 |
+
# audio = AudioSegment.from_mp3("test.mp3")
|
337 |
+
# # Export it as a WAV file
|
338 |
+
# audio.export("test.wav", format="wav")
|
339 |
+
# wav, sample_rate = torchaudio.load("test.wav")
|
340 |
+
# wav= wav.unsqueeze(0)
|
341 |
|
342 |
+
# result2, message2 = detector.detect_watermark(wav, sample_rate=default_sr, message_threshold=0.5)
|
343 |
+
# print(f"This is likely an unwatermarked audio: {result2}")
|
344 |
+
# st.markdown("Probability of audio being watermarked: ")
|
345 |
+
# st.markdown(result2)
|
346 |
+
# st.markdown("This is likely an unwatermarked audio!")
|
347 |
|
348 |
|
349 |
if __name__ == "__main__":
|