Update app.py
Browse files
app.py
CHANGED
@@ -126,49 +126,52 @@ def main():
|
|
126 |
# f.write(audio_file.getbuffer())
|
127 |
# st.audio(tmp_input_audio_file, format="mp3/wav")
|
128 |
|
129 |
-
|
130 |
|
131 |
-
#
|
132 |
-
|
133 |
-
file_extension = os.path.splitext(tmp_input_audio_file)[1].lower()
|
134 |
-
st.markdown(file_extension)
|
135 |
-
if file_extension in [".wav", ".flac"]:
|
136 |
-
with open("test.wav", "wb") as f:
|
137 |
-
f.write(audio_file.getbuffer())
|
138 |
|
139 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
|
141 |
-
|
142 |
-
with open("test.mp3", "wb") as f:
|
143 |
-
f.write(audio_file.getbuffer())
|
144 |
|
145 |
-
|
|
|
|
|
146 |
|
147 |
-
#
|
148 |
-
# mp3_audio = AudioSegment.from_mp3(tmp_input_audio_file)
|
149 |
-
# wav_output_file = tmp_input_audio_file.replace(".mp3", ".wav")
|
150 |
-
# mp3_audio.export(wav_output_file, format="wav")
|
151 |
|
152 |
# Load the WAV file using torchaudio
|
153 |
-
if file_extension in [".wav", ".flac"]:
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
|
158 |
-
|
159 |
-
|
160 |
|
161 |
-
elif file_extension == ".mp3":
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
|
173 |
# #Unsqueeze for line 176
|
174 |
# wav= wav.unsqueeze(0)
|
|
|
126 |
# f.write(audio_file.getbuffer())
|
127 |
# st.audio(tmp_input_audio_file, format="mp3/wav")
|
128 |
|
|
|
129 |
|
130 |
+
#1st attempt
|
131 |
+
audio_path = "C:\Users\Zw\Downloads\example.mp3"
|
|
|
|
|
|
|
|
|
|
|
132 |
|
133 |
+
audio, sr = torchaudio.load(audio_path)
|
134 |
+
st.audio(audio_path, format="audio/mpeg")
|
135 |
+
audio= audio.unsqueeze(0)
|
136 |
+
|
137 |
+
|
138 |
+
#2nd attempt
|
139 |
+
# Save file to local storage
|
140 |
+
# tmp_input_audio_file = os.path.join("/tmp/", audio_file.name)
|
141 |
+
# file_extension = os.path.splitext(tmp_input_audio_file)[1].lower()
|
142 |
+
# st.markdown(file_extension)
|
143 |
+
# if file_extension in [".wav", ".flac"]:
|
144 |
+
# with open("test.wav", "wb") as f:
|
145 |
+
# f.write(audio_file.getbuffer())
|
146 |
|
147 |
+
# st.audio("test.wav", format="audio/wav")
|
|
|
|
|
148 |
|
149 |
+
# elif file_extension == ".mp3":
|
150 |
+
# with open("test.mp3", "wb") as f:
|
151 |
+
# f.write(audio_file.getbuffer())
|
152 |
|
153 |
+
# st.audio("test.mp3", format="audio/mpeg")
|
|
|
|
|
|
|
154 |
|
155 |
# Load the WAV file using torchaudio
|
156 |
+
# if file_extension in [".wav", ".flac"]:
|
157 |
+
# wav, sample_rate = torchaudio.load("test.wav")
|
158 |
+
# st.markdown("Before unsquueze wav")
|
159 |
+
# st.markdown(wav)
|
160 |
|
161 |
+
# #Unsqueeze for line 176
|
162 |
+
# wav= wav.unsqueeze(0)
|
163 |
|
164 |
+
# elif file_extension == ".mp3":
|
165 |
+
# wav3, sample_rate = librosa.load("test.mp3")
|
166 |
+
# st.markdown(wav3)
|
167 |
+
# #RuntimeError: Could not infer dtype of numpy.float32
|
168 |
+
# #wav = torch.tensor(wav3).float() / 32768.0
|
169 |
|
170 |
+
# #RuntimeError: Numpy is not available
|
171 |
+
# wav = torch.from_numpy(wav3) #/32768.0
|
172 |
+
# wav = wav.unsqueeze(0).unsqueeze(0)
|
173 |
+
# st.markdown("Before unsqueeze mp3")
|
174 |
+
# st.markdown(wav)
|
175 |
|
176 |
# #Unsqueeze for line 176
|
177 |
# wav= wav.unsqueeze(0)
|