Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
import streamlit as st
|
3 |
+
from transformers import pipeline
|
4 |
+
import os
|
5 |
+
import torch
|
6 |
+
import datetime
|
7 |
+
import numpy as np
|
8 |
+
import soundfile
|
9 |
+
from wavmark.utils import file_reader
|
10 |
+
|
11 |
+
# pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")
|
12 |
+
|
13 |
+
# st.title("Hot Dog? Or Not?")
|
14 |
+
|
15 |
+
# file_name = st.file_uploader("Upload a hot dog candidate image")
|
16 |
+
|
17 |
+
# if file_name is not None:
|
18 |
+
# col1, col2 = st.columns(2)
|
19 |
+
|
20 |
+
# image = Image.open(file_name)
|
21 |
+
# col1.image(image, use_column_width=True)
|
22 |
+
# predictions = pipeline(image)
|
23 |
+
|
24 |
+
# col2.header("Probabilities")
|
25 |
+
# for p in predictions:
|
26 |
+
# col2.subheader(f"{ p['label'] }: { round(p['score'] * 100, 1)}%")
|
27 |
+
|
28 |
+
def create_default_value():
|
29 |
+
if "def_value" not in st.session_state:
|
30 |
+
def_val_npy = np.random.choice([0, 1], size=32 - len_start_bit)
|
31 |
+
def_val_str = "".join([str(i) for i in def_val_npy])
|
32 |
+
st.session_state.def_value = def_val_str
|
33 |
+
|
34 |
+
# Main web app
|
35 |
+
def main():
|
36 |
+
create_default_value()
|
37 |
+
|
38 |
+
# st.title("MDS07")
|
39 |
+
# st.write("https://github.com/wavmark/wavmark")
|
40 |
+
markdown_text = """
|
41 |
+
# MDS07
|
42 |
+
[AudioSeal](https://github.com/jcha0155/AudioSealEnhanced) is the next-generation watermarking tool driven by AI.
|
43 |
+
You can upload an audio file and encode a custom 16-bit watermark or perform decoding from a watermarked audio.
|
44 |
+
|
45 |
+
This page is for demonstration usage and only process **the first minute** of the audio.
|
46 |
+
If you have longer files for processing, we recommend using [our python toolkit](https://github.com/jcha0155/AudioSealEnhanced).
|
47 |
+
"""
|
48 |
+
|
49 |
+
# 使用st.markdown渲染Markdown文本
|
50 |
+
st.markdown(markdown_text)
|
51 |
+
|
52 |
+
audio_file = st.file_uploader("Upload Audio", type=["wav", "mp3"], accept_multiple_files=False)
|
53 |
+
|
54 |
+
if audio_file:
|
55 |
+
# 保存文件到本地:
|
56 |
+
tmp_input_audio_file = os.path.join("/tmp/", audio_file.name)
|
57 |
+
with open(tmp_input_audio_file, "wb") as f:
|
58 |
+
f.write(audio_file.getbuffer())
|
59 |
+
|
60 |
+
# 展示文件到页面上
|
61 |
+
# st.audio(tmp_input_audio_file, format="audio/wav")
|
62 |
+
|
63 |
+
action = st.selectbox("Select Action", ["Add Watermark", "Decode Watermark"])
|
64 |
+
|
65 |
+
# if action == "Add Watermark":
|
66 |
+
# watermark_text = st.text_input("The watermark (0, 1 list of length-16):", value=st.session_state.def_value)
|
67 |
+
# add_watermark_button = st.button("Add Watermark", key="add_watermark_btn")
|
68 |
+
# if add_watermark_button: # 点击按钮后执行的
|
69 |
+
# if audio_file and watermark_text:
|
70 |
+
# with st.spinner("Adding Watermark..."):
|
71 |
+
# watermarked_audio, encode_time_cost = add_watermark(tmp_input_audio_file, watermark_text)
|
72 |
+
# st.write("Watermarked Audio:")
|
73 |
+
# print("watermarked_audio:", watermarked_audio)
|
74 |
+
# st.audio(watermarked_audio, format="audio/wav")
|
75 |
+
# st.write("Time Cost: %d seconds" % encode_time_cost)
|
76 |
+
|
77 |
+
# # st.button("Add Watermark", disabled=False)
|
78 |
+
# elif action == "Decode Watermark":
|
79 |
+
# if st.button("Decode"):
|
80 |
+
# with st.spinner("Decoding..."):
|
81 |
+
# decode_watermark(tmp_input_audio_file)
|
82 |
+
|
83 |
+
|
84 |
+
if __name__ == "__main__":
|
85 |
+
# default_sr = 16000
|
86 |
+
# max_second_encode = 60
|
87 |
+
# max_second_decode = 30
|
88 |
+
# len_start_bit = 16
|
89 |
+
# device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
|
90 |
+
# model = wavmark.load_model().to(device)
|
91 |
+
main()
|
92 |
+
|
93 |
+
# audio_path = "/Users/my/Library/Mobile Documents/com~apple~CloudDocs/CODE/PycharmProjects/4_语音水印/419_huggingface水印/WavMark/example.wav"
|
94 |
+
|
95 |
+
# decoded_watermark, decode_cost = decode_watermark(audio_path)
|
96 |
+
# print(decoded_watermark)
|