Zw07 commited on
Commit
f0797fe
·
verified ·
1 Parent(s): 0af4dc2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +38 -38
app.py CHANGED
@@ -69,55 +69,55 @@ def main():
69
  #1st attempt
70
  #audio_path = " audio_file.name"
71
 
72
- audio, sr = torchaudio.load(audio_file)
73
- st.audio(audio_file, format="audio/mpeg")
74
- audio= audio.unsqueeze(0)
75
-
76
- st.markdown("SR")
77
- st.markdown(sr)
78
- st.markdown("after unsqueeze wav or mp3")
79
- st.markdown(audio)
80
 
81
  #2nd attempt
82
  # Save file to local storage
83
- # tmp_input_audio_file = os.path.join("/tmp/", audio_file.name)
84
- # file_extension = os.path.splitext(tmp_input_audio_file)[1].lower()
85
- # st.markdown(file_extension)
86
- # if file_extension in [".wav", ".flac"]:
87
- # with open("test.wav", "wb") as f:
88
- # f.write(audio_file.getbuffer())
89
 
90
- # st.audio("test.wav", format="audio/wav")
91
 
92
- # elif file_extension == ".mp3":
93
- # with open("test.mp3", "wb") as f:
94
- # f.write(audio_file.getbuffer())
95
 
96
- # st.audio("test.mp3", format="audio/mpeg")
97
 
98
- # Load the WAV file using torchaudio
99
- # if file_extension in [".wav", ".flac"]:
100
- # wav, sample_rate = torchaudio.load("test.wav")
101
- # st.markdown("Before unsquueze wav")
102
- # st.markdown(wav)
103
 
104
- # #Unsqueeze for line 176
105
- # wav= wav.unsqueeze(0)
106
 
107
- # elif file_extension == ".mp3":
108
- # wav3, sample_rate = librosa.load("test.mp3")
109
- # st.markdown(wav3)
110
- # #RuntimeError: Could not infer dtype of numpy.float32
111
- # #wav = torch.tensor(wav3).float() / 32768.0
112
 
113
- # #RuntimeError: Numpy is not available
114
- # wav = torch.from_numpy(wav3) #/32768.0
115
- # wav = wav.unsqueeze(0).unsqueeze(0)
116
- # st.markdown("Before unsqueeze mp3")
117
- # st.markdown(wav)
118
 
119
- # #Unsqueeze for line 176
120
- # wav= wav.unsqueeze(0)
121
 
122
  # #2nd way
123
  # # Convert the tensor to a byte-like object in WAV format
 
69
  #1st attempt
70
  #audio_path = " audio_file.name"
71
 
72
+ # audio, sr = torchaudio.load(audio_file)
73
+ # st.audio(audio_file, format="audio/mpeg")
74
+ # audio= audio.unsqueeze(0)
75
+
76
+ # st.markdown("SR")
77
+ # st.markdown(sr)
78
+ # st.markdown("after unsqueeze wav or mp3")
79
+ # st.markdown(audio)
80
 
81
  #2nd attempt
82
  # Save file to local storage
83
+ tmp_input_audio_file = os.path.join("/tmp/", audio_file.name)
84
+ file_extension = os.path.splitext(tmp_input_audio_file)[1].lower()
85
+ st.markdown(file_extension)
86
+ if file_extension in [".wav", ".flac"]:
87
+ with open("test.wav", "wb") as f:
88
+ f.write(audio_file.getbuffer())
89
 
90
+ st.audio("test.wav", format="audio/wav")
91
 
92
+ elif file_extension == ".mp3":
93
+ with open("test.mp3", "wb") as f:
94
+ f.write(audio_file.getbuffer())
95
 
96
+ st.audio("test.mp3", format="audio/mpeg")
97
 
98
+ #Load the WAV file using torchaudio
99
+ if file_extension in [".wav", ".flac"]:
100
+ wav, sample_rate = torchaudio.load("test.wav")
101
+ st.markdown("Before unsquueze wav")
102
+ st.markdown(wav)
103
 
104
+ #Unsqueeze for line 176
105
+ wav= wav.unsqueeze(0)
106
 
107
+ elif file_extension == ".mp3":
108
+ wav3, sample_rate = librosa.load("test.mp3")
109
+ st.markdown(wav3)
110
+ #RuntimeError: Could not infer dtype of numpy.float32
111
+ #wav = torch.tensor(wav3).float() / 32768.0
112
 
113
+ #RuntimeError: Numpy is not available
114
+ wav = torch.from_numpy(wav3) #/32768.0
115
+ wav = wav.unsqueeze(0).unsqueeze(0)
116
+ st.markdown("Before unsqueeze mp3")
117
+ st.markdown(wav)
118
 
119
+ #Unsqueeze for line 176
120
+ wav= wav.unsqueeze(0)
121
 
122
  # #2nd way
123
  # # Convert the tensor to a byte-like object in WAV format