Update app.py
Browse files
app.py
CHANGED
@@ -69,55 +69,55 @@ def main():
|
|
69 |
#1st attempt
|
70 |
#audio_path = " audio_file.name"
|
71 |
|
72 |
-
audio, sr = torchaudio.load(audio_file)
|
73 |
-
st.audio(audio_file, format="audio/mpeg")
|
74 |
-
audio= audio.unsqueeze(0)
|
75 |
-
|
76 |
-
st.markdown("SR")
|
77 |
-
st.markdown(sr)
|
78 |
-
st.markdown("after unsqueeze wav or mp3")
|
79 |
-
st.markdown(audio)
|
80 |
|
81 |
#2nd attempt
|
82 |
# Save file to local storage
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
|
90 |
-
|
91 |
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
|
96 |
-
|
97 |
|
98 |
-
#
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
|
104 |
-
|
105 |
-
|
106 |
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
|
119 |
-
#
|
120 |
-
|
121 |
|
122 |
# #2nd way
|
123 |
# # Convert the tensor to a byte-like object in WAV format
|
|
|
69 |
#1st attempt
|
70 |
#audio_path = " audio_file.name"
|
71 |
|
72 |
+
# audio, sr = torchaudio.load(audio_file)
|
73 |
+
# st.audio(audio_file, format="audio/mpeg")
|
74 |
+
# audio= audio.unsqueeze(0)
|
75 |
+
|
76 |
+
# st.markdown("SR")
|
77 |
+
# st.markdown(sr)
|
78 |
+
# st.markdown("after unsqueeze wav or mp3")
|
79 |
+
# st.markdown(audio)
|
80 |
|
81 |
#2nd attempt
|
82 |
# Save file to local storage
|
83 |
+
tmp_input_audio_file = os.path.join("/tmp/", audio_file.name)
|
84 |
+
file_extension = os.path.splitext(tmp_input_audio_file)[1].lower()
|
85 |
+
st.markdown(file_extension)
|
86 |
+
if file_extension in [".wav", ".flac"]:
|
87 |
+
with open("test.wav", "wb") as f:
|
88 |
+
f.write(audio_file.getbuffer())
|
89 |
|
90 |
+
st.audio("test.wav", format="audio/wav")
|
91 |
|
92 |
+
elif file_extension == ".mp3":
|
93 |
+
with open("test.mp3", "wb") as f:
|
94 |
+
f.write(audio_file.getbuffer())
|
95 |
|
96 |
+
st.audio("test.mp3", format="audio/mpeg")
|
97 |
|
98 |
+
#Load the WAV file using torchaudio
|
99 |
+
if file_extension in [".wav", ".flac"]:
|
100 |
+
wav, sample_rate = torchaudio.load("test.wav")
|
101 |
+
st.markdown("Before unsquueze wav")
|
102 |
+
st.markdown(wav)
|
103 |
|
104 |
+
#Unsqueeze for line 176
|
105 |
+
wav= wav.unsqueeze(0)
|
106 |
|
107 |
+
elif file_extension == ".mp3":
|
108 |
+
wav3, sample_rate = librosa.load("test.mp3")
|
109 |
+
st.markdown(wav3)
|
110 |
+
#RuntimeError: Could not infer dtype of numpy.float32
|
111 |
+
#wav = torch.tensor(wav3).float() / 32768.0
|
112 |
|
113 |
+
#RuntimeError: Numpy is not available
|
114 |
+
wav = torch.from_numpy(wav3) #/32768.0
|
115 |
+
wav = wav.unsqueeze(0).unsqueeze(0)
|
116 |
+
st.markdown("Before unsqueeze mp3")
|
117 |
+
st.markdown(wav)
|
118 |
|
119 |
+
#Unsqueeze for line 176
|
120 |
+
wav= wav.unsqueeze(0)
|
121 |
|
122 |
# #2nd way
|
123 |
# # Convert the tensor to a byte-like object in WAV format
|