import time
import streamlit as st
# from transformers import pipeline
import os
import torch
import datetime
import numpy as np
import soundfile
from wavmark.utils import file_reader
from audioseal import AudioSeal
import torchaudio
from pydub import AudioSegment
import io

# pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")

# st.title("Hot Dog? Or Not?")

# file_name = st.file_uploader("Upload a hot dog candidate image")

# if file_name is not None:
#     col1, col2 = st.columns(2)

#     image = Image.open(file_name)
#     col1.image(image, use_column_width=True)
#     predictions = pipeline(image)

#     col2.header("Probabilities")
#     for p in predictions:
#         col2.subheader(f"{ p['label'] }: { round(p['score'] * 100, 1)}%")

# def read_as_single_channel_16k(audio_file, def_sr=16000, verbose=True, aim_second=None):
#     assert os.path.exists(audio_file)
#     st.markdown(os.path.exists(audio_file))
    
#     file_extension = os.path.splitext(audio_file)[1].lower()
#     st.markdown(file_extension)

#     if file_extension == ".mp3":
#         data, origin_sr = librosa.load(audio_file, sr=None)
#     elif file_extension in [".wav", ".flac"]:
#         data, origin_sr = soundfile.read(audio_file)
#     else:
#         raise Exception("unsupported file:" + file_extension)

#     # channel check
#     if len(data.shape) == 2:
#         left_channel = data[:, 0]
#         if verbose:
#             print("Warning! the input audio has multiple chanel, this tool only use the first channel!")
#         data = left_channel

#     # sample rate check
#     if origin_sr != def_sr:
#         data = resampy.resample(data, origin_sr, def_sr)
#         if verbose:
#             print("Warning! The original samplerate is not 16Khz; the watermarked audio will be re-sampled to 16KHz")

#     sr = def_sr
#     audio_length_second = 1.0 * len(data) / sr
#     # if verbose:
#     #     print("input length :%d second" % audio_length_second)

#     if aim_second is not None:
#         signal = data
#         assert len(signal) > 0
#         current_second = len(signal) / sr
#         if current_second < aim_second:
#             repeat_count = int(aim_second / current_second) + 1
#             signal = np.repeat(signal, repeat_count)
#         data = signal[0:sr * aim_second]

#     return data, sr, audio_length_second

    
# def my_read_file(audio_path, max_second):
#     signal, sr, audio_length_second = read_as_single_channel_16k(audio_path, default_sr)
#     if audio_length_second > max_second:
#         signal = signal[0:default_sr * max_second]
#         audio_length_second = max_second

#     return signal, sr, audio_length_second

def create_default_value():
    if "def_value" not in st.session_state:
        def_val_npy = np.random.choice([0, 1], size=32 - len_start_bit)
        def_val_str = "".join([str(i) for i in def_val_npy])
        st.session_state.def_value = def_val_str

def download_sample_audio():
    url = "https://keithito.com/LJ-Speech-Dataset/LJ037-0171.wav"
    with open("test.wav", "wb") as f:
        resp = urllib.request.urlopen(url)
        f.write(resp.read())
    
    wav, sample_rate = torchaudio.load("test.wav")
    return wav, sample_rate

# Main web app
def main():
    create_default_value()

    # st.title("MDS07")
    # st.write("https://github.com/wavmark/wavmark")
    markdown_text = """
    # MDS07
    [AudioSeal](https://github.com/jcha0155/AudioSealEnhanced) is the next-generation watermarking tool driven by AI. 
    You can upload an audio file and encode a custom 16-bit watermark or perform decoding from a watermarked audio.
    
    This page is for demonstration usage and only process **the first minute** of the audio. 
    If you have longer files for processing, we recommend using [our python toolkit](https://github.com/jcha0155/AudioSealEnhanced).
    """

    # 使用st.markdown渲染Markdown文本
    st.markdown(markdown_text)

    audio_file = st.file_uploader("Upload Audio", type=["wav", "mp3"], accept_multiple_files=False)

    if audio_file:
        # 保存文件到本地:
        # tmp_input_audio_file = os.path.join("/tmp/", audio_file.name)
        # st.markdown(tmp_input_audio_file)
        # with open(tmp_input_audio_file, "wb") as f:
        #     f.write(audio_file.getbuffer())
        # st.audio(tmp_input_audio_file, format="mp3/wav")

        

        # Save file to local storage
        tmp_input_audio_file = os.path.join("/tmp/", audio_file.name)
        with open("test.wav", "wb") as f:
            f.write(audio_file.getbuffer())

        # # Convert MP3 to WAV using pydub
        # mp3_audio = AudioSegment.from_mp3(tmp_input_audio_file)
        # wav_output_file = tmp_input_audio_file.replace(".mp3", ".wav")
        # mp3_audio.export(wav_output_file, format="wav")

        # Load the WAV file using torchaudio
        wav, sample_rate = torchaudio.load("test.wav")
        st.markdown("Before unsquuezewav")
        st.markdown(wav)
        wav= wav.unsqueeze(0)

        #2nd way
        # Convert the tensor to a byte-like object in WAV format
        with io.BytesIO() as buffer:
        # Save the audio to the buffer using torchaudio
            torchaudio.save(buffer, wav, default_sr, format="wav")
        # Get the byte data from the buffer
            wav = buffer.getvalue()
        # Play the audio file (WAV format)
        st.audio(wav, format="audio/wav")
        
        # wav, sample_rate = torchaudio.load(audio_file, format="mp3/wav")
        st.markdown("SR")
        st.markdown(sample_rate)
        st.markdown("after unsqueeze wav")
        st.markdown(wav)
        # 展示文件到页面上
        # st.audio(tmp_input_audio_file, format="audio/wav")

        action = st.selectbox("Select Action", ["Add Watermark", "Decode Watermark"])

        if action == "Add Watermark":
            watermark_text = st.text_input("The watermark (0, 1 list of length-16):", value=st.session_state.def_value)
            add_watermark_button = st.button("Add Watermark", key="add_watermark_btn")
            if add_watermark_button:  # 点击按钮后执行的
                if audio_file and watermark_text:
                    with st.spinner("Adding Watermark..."):
                        #wav = my_read_file(wav,max_second_encode)
                        
                        #1st attempt
                        watermark = model.get_watermark(wav, default_sr)
                        watermarked_audio = wav + watermark
                        print(watermarked_audio.size())
                        size = watermarked_audio.size()
                        st.markdown(size)

                        print(watermarked_audio.squeeze())
                        squeeze = watermarked_audio.squeeze(1)
                        shape = squeeze.size()
                        st.markdown(shape)

                        st.markdown(squeeze)
                        
                        watermarked_audio = torchaudio.save("output.wav", squeeze, default_sr)
                        st.audio(watermarked_audio, format="audio/wav")
                        
                        #2nd Attempt
                        # watermarked_audio = model(wav, sample_rate=default_sr, alpha=1)
                        # print(watermarked_audio.size())
                        # size = watermarked_audio.size()
                        # st.markdown(size)

                        # print(watermarked_audio.squeeze())
                        # squeeze = watermarked_audio.squeeze(1)
                        # shape = squeeze.size()
                        # st.markdown(shape)

                        # st.markdown(squeeze)
                        # # watermarked_audio, encode_time_cost = add_watermark(tmp_input_audio_file, watermark_text)
                        # st.write("Watermarked Audio:")
                        # st.markdown(watermarked_audio)
                        # print("watermarked_audio:", watermarked_audio)

                        # watermarked_audio = torchaudio.save("output.wav", squeeze, default_sr)
                        # st.audio(watermarked_audio, format="audio/wav")
                        #st.write("Time Cost: %d seconds" % encode_time_cost)

#                         # st.button("Add Watermark", disabled=False)
#         elif action == "Decode Watermark":
#             if st.button("Decode"):
#                 with st.spinner("Decoding..."):
#                     decode_watermark(tmp_input_audio_file)


if __name__ == "__main__":
    default_sr = 16000
    max_second_encode = 60
    max_second_decode = 30
    len_start_bit = 16
    device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
    # model = wavmark.load_model().to(device)
    model = AudioSeal.load_generator("audioseal_wm_16bits")
    main()

    # audio_path = "/Users/my/Library/Mobile Documents/com~apple~CloudDocs/CODE/PycharmProjects/4_语音水印/419_huggingface水印/WavMark/example.wav"

    # decoded_watermark, decode_cost = decode_watermark(audio_path)
    # print(decoded_watermark)