Spaces:
Runtime error
Runtime error
Upload folder using huggingface_hub
Browse files
demo.py
CHANGED
@@ -1,39 +1,13 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
|
4 |
import logging
|
5 |
-
import os
|
6 |
|
7 |
# Setup logging
|
8 |
logging.basicConfig(level=logging.INFO)
|
9 |
logger = logging.getLogger(__name__)
|
10 |
|
11 |
-
|
12 |
-
"""Load the GGUF model from Hugging Face."""
|
13 |
-
logger.info("Loading GGUF model...")
|
14 |
-
|
15 |
-
# Download the model from HF Hub
|
16 |
-
model_path = hf_hub_download(
|
17 |
-
repo_id="Zwounds/boolean-search-model",
|
18 |
-
filename="boolean-model.gguf",
|
19 |
-
repo_type="model"
|
20 |
-
)
|
21 |
-
|
22 |
-
# Load the model with llama-cpp-python
|
23 |
-
model = Llama(
|
24 |
-
model_path=model_path,
|
25 |
-
n_ctx=2048, # Context window
|
26 |
-
n_gpu_layers=0 # Use CPU only for HF Spaces compatibility
|
27 |
-
)
|
28 |
-
|
29 |
-
return model
|
30 |
-
|
31 |
-
def format_prompt(query):
|
32 |
-
"""Format query with instruction prompt."""
|
33 |
-
return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
|
34 |
-
|
35 |
-
### Instruction:
|
36 |
-
Convert this natural language query into a boolean search query by following these rules:
|
37 |
|
38 |
1. FIRST: Remove all meta-terms from this list (they should NEVER appear in output):
|
39 |
- articles, papers, research, studies
|
@@ -59,57 +33,61 @@ Convert this natural language query into a boolean search query by following the
|
|
59 |
- Right: "natural language processing"
|
60 |
- Single words must NEVER have quotes (e.g., science, research, learning)
|
61 |
- Use AND to connect required concepts
|
62 |
-
- Use OR with parentheses for alternatives
|
63 |
|
64 |
-
|
65 |
-
"
|
66 |
-
|
67 |
-
|
68 |
-
"
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
"
|
75 |
-
|
76 |
-
|
77 |
-
"Articles about effective teaching methods for second language acquisition"
|
78 |
-
→ teaching AND "second language acquisition"
|
79 |
-
|
80 |
-
### Input:
|
81 |
-
{query}
|
82 |
|
83 |
-
|
84 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
-
def get_boolean_query(query):
|
87 |
"""Generate boolean query from natural language."""
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
# Generate response
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
|
|
|
|
96 |
)
|
97 |
|
98 |
-
|
99 |
-
text = response["choices"][0]["text"].strip()
|
100 |
-
|
101 |
-
# Extract response section if present
|
102 |
-
if "### Response:" in text:
|
103 |
-
text = text.split("### Response:")[-1].strip()
|
104 |
-
|
105 |
-
return text
|
106 |
|
107 |
-
#
|
108 |
-
logger.info("Initializing model...")
|
109 |
-
model = load_model()
|
110 |
-
logger.info("Model loaded successfully")
|
111 |
-
|
112 |
-
# Example queries using more natural language
|
113 |
examples = [
|
114 |
# Testing removal of meta-terms
|
115 |
["Find research papers examining the long-term effects of meditation on brain structure"],
|
@@ -157,12 +135,25 @@ examples = [
|
|
157 |
["Articles about renewable energy integration challenges in developing countries or island nations"]
|
158 |
]
|
159 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
|
161 |
-
# Create Gradio interface with metadata for deployment
|
162 |
-
title = "Boolean Search Query Generator"
|
163 |
-
description = "Convert natural language queries into boolean search expressions. The model will remove search-related terms (like 'articles', 'research', etc.), handle generic implied terms (like 'practices', 'methods'), and format the core concepts using proper boolean syntax."
|
164 |
demo = gr.Interface(
|
165 |
-
fn=get_boolean_query,
|
166 |
inputs=[
|
167 |
gr.Textbox(
|
168 |
label="Enter your natural language query",
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
import torch
|
4 |
import logging
|
|
|
5 |
|
6 |
# Setup logging
|
7 |
logging.basicConfig(level=logging.INFO)
|
8 |
logger = logging.getLogger(__name__)
|
9 |
|
10 |
+
SYSTEM_INSTRUCTION = """Convert natural language queries into boolean search queries by following these rules:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
1. FIRST: Remove all meta-terms from this list (they should NEVER appear in output):
|
13 |
- articles, papers, research, studies
|
|
|
33 |
- Right: "natural language processing"
|
34 |
- Single words must NEVER have quotes (e.g., science, research, learning)
|
35 |
- Use AND to connect required concepts
|
36 |
+
- Use OR with parentheses for alternatives"""
|
37 |
|
38 |
+
def load_model():
|
39 |
+
"""Load the model and set up tokenizer."""
|
40 |
+
logger.info("Loading model...")
|
41 |
+
model = AutoModelForCausalLM.from_pretrained(
|
42 |
+
"boolean_model_merged",
|
43 |
+
device_map="auto",
|
44 |
+
torch_dtype=torch.float16
|
45 |
+
)
|
46 |
+
tokenizer = AutoTokenizer.from_pretrained("boolean_model_merged")
|
47 |
+
tokenizer.use_default_system_prompt = False
|
48 |
+
logger.info("Model loaded successfully")
|
49 |
+
|
50 |
+
return model, tokenizer
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
+
def extract_response(output: str) -> str:
|
53 |
+
"""Extract the response part from the output."""
|
54 |
+
start_marker = "<|start_header_id|>assistant<|end_header_id|>"
|
55 |
+
end_marker = "<|eot_id|>"
|
56 |
+
|
57 |
+
start_idx = output.find(start_marker)
|
58 |
+
if start_idx != -1:
|
59 |
+
start_idx += len(start_marker)
|
60 |
+
end_idx = output.find(end_marker, start_idx)
|
61 |
+
if end_idx != -1:
|
62 |
+
return output[start_idx:end_idx].strip()
|
63 |
+
|
64 |
+
return output.strip()
|
65 |
|
66 |
+
def get_boolean_query(query: str, model=None, tokenizer=None) -> str:
|
67 |
"""Generate boolean query from natural language."""
|
68 |
+
# Format the conversation
|
69 |
+
conversation = [
|
70 |
+
{"role": "system", "content": SYSTEM_INSTRUCTION},
|
71 |
+
{"role": "user", "content": query}
|
72 |
+
]
|
73 |
+
|
74 |
+
# Format into chat template
|
75 |
+
prompt = tokenizer.apply_chat_template(conversation, tokenize=False)
|
76 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
77 |
|
78 |
# Generate response
|
79 |
+
outputs = model.generate(
|
80 |
+
**inputs,
|
81 |
+
max_new_tokens=64,
|
82 |
+
do_sample=False,
|
83 |
+
use_cache=True,
|
84 |
+
pad_token_id=tokenizer.pad_token_id,
|
85 |
+
eos_token_id=tokenizer.eos_token_id
|
86 |
)
|
87 |
|
88 |
+
return extract_response(tokenizer.batch_decode(outputs)[0])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
+
# Example queries demonstrating various cases
|
|
|
|
|
|
|
|
|
|
|
91 |
examples = [
|
92 |
# Testing removal of meta-terms
|
93 |
["Find research papers examining the long-term effects of meditation on brain structure"],
|
|
|
135 |
["Articles about renewable energy integration challenges in developing countries or island nations"]
|
136 |
]
|
137 |
|
138 |
+
# Load model globally
|
139 |
+
logger.info("Initializing model...")
|
140 |
+
model, tokenizer = load_model()
|
141 |
+
|
142 |
+
# Create Gradio interface
|
143 |
+
title = "Natural Language to Boolean Search"
|
144 |
+
description = """Convert natural language queries into boolean search expressions. The model will:
|
145 |
+
|
146 |
+
1. Remove search-related terms (like 'articles', 'research', etc.)
|
147 |
+
2. Handle generic implied terms (like 'practices', 'methods')
|
148 |
+
3. Format concepts using proper boolean syntax:
|
149 |
+
- Multi-word phrases in quotes
|
150 |
+
- Single words without quotes
|
151 |
+
- AND to connect required concepts
|
152 |
+
- OR with parentheses for alternatives
|
153 |
+
"""
|
154 |
|
|
|
|
|
|
|
155 |
demo = gr.Interface(
|
156 |
+
fn=lambda x: get_boolean_query(x, model, tokenizer),
|
157 |
inputs=[
|
158 |
gr.Textbox(
|
159 |
label="Enter your natural language query",
|