Spaces:
Runtime error
Runtime error
Upload folder using huggingface_hub
Browse files- demo.py +19 -45
- requirements.txt +1 -3
demo.py
CHANGED
@@ -1,6 +1,5 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
import torch
|
4 |
import logging
|
5 |
|
6 |
# Setup logging
|
@@ -36,56 +35,31 @@ SYSTEM_INSTRUCTION = """Convert natural language queries into boolean search que
|
|
36 |
- Use OR with parentheses for alternatives"""
|
37 |
|
38 |
def load_model():
|
39 |
-
"""Load the model
|
40 |
logger.info("Loading model...")
|
41 |
-
model =
|
42 |
-
"Zwounds/boolean-search-model",
|
43 |
-
|
44 |
-
torch_dtype=torch.float32
|
45 |
)
|
46 |
-
tokenizer = AutoTokenizer.from_pretrained("Zwounds/boolean-search-model")
|
47 |
-
tokenizer.use_default_system_prompt = False
|
48 |
logger.info("Model loaded successfully")
|
49 |
-
|
50 |
-
return model, tokenizer
|
51 |
-
|
52 |
-
def extract_response(output: str) -> str:
|
53 |
-
"""Extract the response part from the output."""
|
54 |
-
start_marker = "<|start_header_id|>assistant<|end_header_id|>"
|
55 |
-
end_marker = "<|eot_id|>"
|
56 |
-
|
57 |
-
start_idx = output.find(start_marker)
|
58 |
-
if start_idx != -1:
|
59 |
-
start_idx += len(start_marker)
|
60 |
-
end_idx = output.find(end_marker, start_idx)
|
61 |
-
if end_idx != -1:
|
62 |
-
return output[start_idx:end_idx].strip()
|
63 |
-
|
64 |
-
return output.strip()
|
65 |
|
66 |
-
def get_boolean_query(query: str, model=None
|
67 |
"""Generate boolean query from natural language."""
|
68 |
-
# Format the conversation
|
69 |
-
|
70 |
-
{"role": "system", "content": SYSTEM_INSTRUCTION},
|
71 |
-
{"role": "user", "content": query}
|
72 |
-
]
|
73 |
-
|
74 |
-
# Format into chat template
|
75 |
-
prompt = tokenizer.apply_chat_template(conversation, tokenize=False)
|
76 |
-
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
77 |
|
78 |
-
# Generate
|
79 |
outputs = model.generate(
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
pad_token_id=tokenizer.pad_token_id,
|
85 |
-
eos_token_id=tokenizer.eos_token_id
|
86 |
)
|
87 |
|
88 |
-
|
|
|
|
|
89 |
|
90 |
# Example queries demonstrating various cases
|
91 |
examples = [
|
@@ -137,7 +111,7 @@ examples = [
|
|
137 |
|
138 |
# Load model globally
|
139 |
logger.info("Initializing model...")
|
140 |
-
model
|
141 |
|
142 |
# Create Gradio interface
|
143 |
title = "Natural Language to Boolean Search"
|
@@ -153,7 +127,7 @@ description = """Convert natural language queries into boolean search expression
|
|
153 |
"""
|
154 |
|
155 |
demo = gr.Interface(
|
156 |
-
fn=lambda x: get_boolean_query(x, model
|
157 |
inputs=[
|
158 |
gr.Textbox(
|
159 |
label="Enter your natural language query",
|
|
|
1 |
import gradio as gr
|
2 |
+
from vllm import LLM
|
|
|
3 |
import logging
|
4 |
|
5 |
# Setup logging
|
|
|
35 |
- Use OR with parentheses for alternatives"""
|
36 |
|
37 |
def load_model():
|
38 |
+
"""Load the model using vLLM."""
|
39 |
logger.info("Loading model...")
|
40 |
+
model = LLM(
|
41 |
+
model="Zwounds/boolean-search-model",
|
42 |
+
tensor_parallel_size=1 # For CPU
|
|
|
43 |
)
|
|
|
|
|
44 |
logger.info("Model loaded successfully")
|
45 |
+
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
+
def get_boolean_query(query: str, model=None) -> str:
|
48 |
"""Generate boolean query from natural language."""
|
49 |
+
# Format the conversation with proper markers
|
50 |
+
prompt = f"""<|start_header_id|>system<|end_header_id|>{SYSTEM_INSTRUCTION}<|start_header_id|>user<|end_header_id|>{query}<|start_header_id|>assistant<|end_header_id|>"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
+
# Generate with vllm
|
53 |
outputs = model.generate(
|
54 |
+
prompt,
|
55 |
+
max_tokens=64,
|
56 |
+
temperature=0.0, # Deterministic
|
57 |
+
stop_tokens=["<|eot_id|>"]
|
|
|
|
|
58 |
)
|
59 |
|
60 |
+
# Extract response
|
61 |
+
response = outputs[0].outputs[0].text.strip()
|
62 |
+
return response
|
63 |
|
64 |
# Example queries demonstrating various cases
|
65 |
examples = [
|
|
|
111 |
|
112 |
# Load model globally
|
113 |
logger.info("Initializing model...")
|
114 |
+
model = load_model()
|
115 |
|
116 |
# Create Gradio interface
|
117 |
title = "Natural Language to Boolean Search"
|
|
|
127 |
"""
|
128 |
|
129 |
demo = gr.Interface(
|
130 |
+
fn=lambda x: get_boolean_query(x, model),
|
131 |
inputs=[
|
132 |
gr.Textbox(
|
133 |
label="Enter your natural language query",
|
requirements.txt
CHANGED
@@ -1,5 +1,3 @@
|
|
1 |
gradio>=4.0.0
|
2 |
-
|
3 |
-
torch>=1.0.0
|
4 |
huggingface-hub>=0.19.4
|
5 |
-
accelerate>=0.26.0
|
|
|
1 |
gradio>=4.0.0
|
2 |
+
vllm>=0.3.0
|
|
|
3 |
huggingface-hub>=0.19.4
|
|