""" 2025.3.15 2025.3.17 4.50.0.dev0 0.15.2 __UNSLOTH_VERSIONING__ """ from torch import Tensor import torch import torch.nn as nn from torch.nn import functional as F from trl.trainer.ppo_trainer import (Accelerator, BaseImageProcessor, CallbackHandler, DEFAULT_CALLBACKS, DEFAULT_PROGRESS_CALLBACK, DataCollatorWithPadding, DataLoader, Dataset, ExportableState, FeatureExtractionMixin, GenerationConfig, INVALID_LOGPROB, OnlineTrainerState, Optional, PPOConfig, PPOTrainer, PeftConfig, PeftModel, PolicyAndValueWrapper, PreTrainedTokenizerBase, PrinterCallback, ProcessorMixin, Trainer, TrainerCallback, TrainerControl, Union, batch_generation, broadcast, contextmanager, create_reference_model, defaultdict, disable_dropout_in_model, exact_div, first_true_indices, forward, gather_object, gc, generate_model_card, get_comet_experiment_url, get_peft_model, get_reporting_integration_callbacks, get_reward, is_peft_available, is_wandb_available, log_table_to_comet_experiment, masked_mean, masked_whiten, math, nn, np, nullcontext, os, pd, peft_module_casting_to_bf16, prepare_deepspeed, print_rich_table, textwrap, time, torch, truncate_response, unwrap_model_for_generation) import os from typing import * from dataclasses import dataclass, field from packaging.version import Version import torch import numpy as np from contextlib import nullcontext from torch.nn import functional as F from transformers import DataCollatorForSeq2Seq, DataCollatorForLanguageModeling torch_compile_options = { "epilogue_fusion" : True, "max_autotune" : False, "shape_padding" : True, "trace.enabled" : False, "triton.cudagraphs" : False, } @torch.compile(dynamic = True, fullgraph = True, options = torch_compile_options,) def selective_log_softmax(logits, index): logits = logits.to(torch.float32) selected_logits = torch.gather(logits, dim = -1, index = index.unsqueeze(-1)).squeeze(-1) # loop to reduce peak mem consumption # logsumexp_values = torch.stack([torch.logsumexp(lg, dim=-1) for lg in logits]) logsumexp_values = torch.logsumexp(logits, dim = -1) per_token_logps = selected_logits - logsumexp_values # log_softmax(x_i) = x_i - logsumexp(x) return per_token_logps @dataclass class UnslothPPOConfig(PPOConfig): """ Configuration class for the [`PPOTrainer`]. Using [`~transformers.HfArgumentParser`] we can turn this class into [argparse](https://docs.python.org/3/library/argparse#module-argparse) arguments that can be specified on the command line. Parameters: exp_name (`str`, *optional*, defaults to `os.path.basename(__file__)[:-3]`): Name of this experiment. reward_model_path (`str`, *optional*, defaults to `"EleutherAI/pythia-160m"`): Path to the reward model. model_adapter_name (`str` or `None`, *optional*, defaults to `None`): Name of the train target PEFT adapter, when using LoRA with multiple adapters. ref_adapter_name (`str` or `None`, *optional*, defaults to `None`): Name of the reference PEFT adapter, when using LoRA with multiple adapters. num_ppo_epochs (`int`, *optional*, defaults to `4`): Number of epochs to train. whiten_rewards (`bool`, *optional*, defaults to `False`): Whether to whiten the rewards. kl_coef (`float`, *optional*, defaults to `0.05`): KL coefficient. cliprange (`float`, *optional*, defaults to `0.2`): Clip range. vf_coef (`float`, *optional*, defaults to `0.1`): Value function coefficient. cliprange_value (`float`, *optional*, defaults to `0.2`): Clip range for the value function. gamma (`float`, *optional*, defaults to `1.0`): Discount factor. lam (`float`, *optional*, defaults to `0.95`): Lambda value for GAE. ds3_gather_for_generation (`bool`, *optional*, defaults to `True`): This setting applies to DeepSpeed ZeRO-3. If enabled, the policy model weights are gathered for generation, improving generation speed. However, disabling this option allows training models that exceed the VRAM capacity of a single GPU, albeit at the cost of slower generation. """ vllm_sampling_params: Optional[Any] = field( default = None, metadata = {'help': 'vLLM SamplingParams'}, ) unsloth_num_chunks : Optional[int] = field( default = -1, metadata = {'help': 'Chunk size to reduce memory usage. -1 is most efficient.'}, ) def __init__( self, output_dir = None, overwrite_output_dir = None, do_train = False, do_eval = False, do_predict = False, eval_strategy = 'no', prediction_loss_only = False, per_device_train_batch_size = 4, per_device_eval_batch_size = 4, per_gpu_train_batch_size = None, per_gpu_eval_batch_size = None, gradient_accumulation_steps = 2, eval_accumulation_steps = 2, eval_delay = 0, torch_empty_cache_steps = 250, learning_rate = 5e-05, weight_decay = 0.01, adam_beta1 = 0.9, adam_beta2 = 0.999, adam_epsilon = 1e-08, max_grad_norm = 1.0, num_train_epochs = 3.0, max_steps = -1, lr_scheduler_type = 'linear', warmup_ratio = 0.1, warmup_steps = 0, log_level = 'passive', log_level_replica = 'warning', log_on_each_node = True, logging_dir = None, logging_strategy = 'steps', logging_first_step = False, logging_steps = 1, logging_nan_inf_filter = False, save_strategy = 'steps', save_steps = 500, save_total_limit = None, save_safetensors = True, save_on_each_node = False, save_only_model = False, restore_callback_states_from_checkpoint = False, no_cuda = False, use_cpu = False, use_mps_device = False, seed = 3407, data_seed = 3407, jit_mode_eval = False, use_ipex = False, bf16 = False, fp16 = False, fp16_opt_level = 'O1', half_precision_backend = 'auto', bf16_full_eval = False, fp16_full_eval = False, tf32 = None, local_rank = -1, ddp_backend = None, tpu_num_cores = None, tpu_metrics_debug = False, debug = '', dataloader_drop_last = False, eval_steps = None, dataloader_num_workers = 0, dataloader_prefetch_factor = None, past_index = -1, run_name = None, disable_tqdm = None, remove_unused_columns = True, label_names = None, load_best_model_at_end = False, metric_for_best_model = None, greater_is_better = None, ignore_data_skip = False, fsdp = '', fsdp_min_num_params = 0, fsdp_config = None, tp_size = 0, fsdp_transformer_layer_cls_to_wrap = None, accelerator_config = None, deepspeed = None, label_smoothing_factor = 0.0, optim = 'adamw_8bit', optim_args = None, adafactor = False, group_by_length = False, length_column_name = 'length', report_to = None, ddp_find_unused_parameters = None, ddp_bucket_cap_mb = None, ddp_broadcast_buffers = None, dataloader_pin_memory = True, dataloader_persistent_workers = False, skip_memory_metrics = True, use_legacy_prediction_loop = False, push_to_hub = False, resume_from_checkpoint = None, hub_model_id = None, hub_strategy = 'every_save', hub_token = None, hub_private_repo = None, hub_always_push = False, gradient_checkpointing = False, gradient_checkpointing_kwargs = None, include_inputs_for_metrics = False, eval_do_concat_batches = True, fp16_backend = 'auto', evaluation_strategy = None, push_to_hub_model_id = None, push_to_hub_organization = None, push_to_hub_token = None, mp_parameters = '', auto_find_batch_size = False, full_determinism = False, torchdynamo = None, ray_scope = 'last', ddp_timeout = 1800, torch_compile = False, torch_compile_backend = None, torch_compile_mode = None, dispatch_batches = None, split_batches = None, include_tokens_per_second = False, include_num_input_tokens_seen = False, neftune_noise_alpha = None, optim_target_modules = None, batch_eval_metrics = False, eval_on_start = False, use_liger_kernel = False, eval_use_gather_object = False, average_tokens_across_devices = False, dataset_num_proc = None, num_mini_batches = 1, total_episodes = None, local_rollout_forward_batch_size = 64, num_sample_generations = 10, response_length = 53, stop_token = None, stop_token_id = None, temperature = 0.7, missing_eos_penalty = None, sft_model_path = 'EleutherAI/pythia-160m', world_size = None, num_total_batches = None, micro_batch_size = None, local_batch_size = None, batch_size = None, local_mini_batch_size = None, mini_batch_size = None, exp_name = 'ppo_config', reward_model_path = 'EleutherAI/pythia-160m', model_adapter_name = None, ref_adapter_name = None, num_ppo_epochs = 4, whiten_rewards = False, kl_coef = 0.05, cliprange = 0.2, vf_coef = 0.1, cliprange_value = 0.2, gamma = 1.0, lam = 0.95, ds3_gather_for_generation = True, vllm_sampling_params = None, unsloth_num_chunks = -1, **kwargs, ): if learning_rate < 1e-7: raise FloatingPointError(f'Unsloth: Your learning rate of `{learning_rate}` is too small and less than 1e-7! Consider increasing it, otherwise gradient updates will be close to 0!') if learning_rate > 1: raise OverflowError(f'Unsloth: Your learning rate of `{learning_rate}` is way too larger > 1! Consider decreasing it to 1e-1, otherwise gradient updates will explode!') if output_dir is None and save_strategy == 'steps' and save_steps == 500: output_dir = 'unsloth_training_checkpoints' save_strategy = 'no' if dataset_num_proc is None: from multiprocessing import cpu_count dataset_num_proc = cpu_count() super().__init__( output_dir = output_dir, overwrite_output_dir = overwrite_output_dir, do_train = do_train, do_eval = do_eval, do_predict = do_predict, eval_strategy = eval_strategy, prediction_loss_only = prediction_loss_only, per_device_train_batch_size = per_device_train_batch_size, per_device_eval_batch_size = per_device_eval_batch_size, per_gpu_train_batch_size = per_gpu_train_batch_size, per_gpu_eval_batch_size = per_gpu_eval_batch_size, gradient_accumulation_steps = gradient_accumulation_steps, eval_accumulation_steps = eval_accumulation_steps, eval_delay = eval_delay, torch_empty_cache_steps = torch_empty_cache_steps, learning_rate = learning_rate, weight_decay = weight_decay, adam_beta1 = adam_beta1, adam_beta2 = adam_beta2, adam_epsilon = adam_epsilon, max_grad_norm = max_grad_norm, num_train_epochs = num_train_epochs, max_steps = max_steps, lr_scheduler_type = lr_scheduler_type, warmup_ratio = warmup_ratio, warmup_steps = warmup_steps, log_level = log_level, log_level_replica = log_level_replica, log_on_each_node = log_on_each_node, logging_dir = logging_dir, logging_strategy = logging_strategy, logging_first_step = logging_first_step, logging_steps = logging_steps, logging_nan_inf_filter = logging_nan_inf_filter, save_strategy = save_strategy, save_steps = save_steps, save_total_limit = save_total_limit, save_safetensors = save_safetensors, save_on_each_node = save_on_each_node, save_only_model = save_only_model, restore_callback_states_from_checkpoint = restore_callback_states_from_checkpoint, no_cuda = no_cuda, use_cpu = use_cpu, use_mps_device = use_mps_device, seed = seed, data_seed = data_seed, jit_mode_eval = jit_mode_eval, use_ipex = use_ipex, bf16 = bf16, fp16 = fp16, fp16_opt_level = fp16_opt_level, half_precision_backend = half_precision_backend, bf16_full_eval = bf16_full_eval, fp16_full_eval = fp16_full_eval, tf32 = tf32, local_rank = local_rank, ddp_backend = ddp_backend, tpu_num_cores = tpu_num_cores, tpu_metrics_debug = tpu_metrics_debug, debug = debug, dataloader_drop_last = dataloader_drop_last, eval_steps = eval_steps, dataloader_num_workers = dataloader_num_workers, dataloader_prefetch_factor = dataloader_prefetch_factor, past_index = past_index, run_name = run_name, disable_tqdm = disable_tqdm, remove_unused_columns = remove_unused_columns, label_names = label_names, load_best_model_at_end = load_best_model_at_end, metric_for_best_model = metric_for_best_model, greater_is_better = greater_is_better, ignore_data_skip = ignore_data_skip, fsdp = fsdp, fsdp_min_num_params = fsdp_min_num_params, fsdp_config = fsdp_config, tp_size = tp_size, fsdp_transformer_layer_cls_to_wrap = fsdp_transformer_layer_cls_to_wrap, accelerator_config = accelerator_config, deepspeed = deepspeed, label_smoothing_factor = label_smoothing_factor, optim = optim, optim_args = optim_args, adafactor = adafactor, group_by_length = group_by_length, length_column_name = length_column_name, report_to = report_to, ddp_find_unused_parameters = ddp_find_unused_parameters, ddp_bucket_cap_mb = ddp_bucket_cap_mb, ddp_broadcast_buffers = ddp_broadcast_buffers, dataloader_pin_memory = dataloader_pin_memory, dataloader_persistent_workers = dataloader_persistent_workers, skip_memory_metrics = skip_memory_metrics, use_legacy_prediction_loop = use_legacy_prediction_loop, push_to_hub = push_to_hub, resume_from_checkpoint = resume_from_checkpoint, hub_model_id = hub_model_id, hub_strategy = hub_strategy, hub_token = hub_token, hub_private_repo = hub_private_repo, hub_always_push = hub_always_push, gradient_checkpointing = gradient_checkpointing, gradient_checkpointing_kwargs = gradient_checkpointing_kwargs, include_inputs_for_metrics = include_inputs_for_metrics, eval_do_concat_batches = eval_do_concat_batches, fp16_backend = fp16_backend, evaluation_strategy = evaluation_strategy, push_to_hub_model_id = push_to_hub_model_id, push_to_hub_organization = push_to_hub_organization, push_to_hub_token = push_to_hub_token, mp_parameters = mp_parameters, auto_find_batch_size = auto_find_batch_size, full_determinism = full_determinism, torchdynamo = torchdynamo, ray_scope = ray_scope, ddp_timeout = ddp_timeout, torch_compile = torch_compile, torch_compile_backend = torch_compile_backend, torch_compile_mode = torch_compile_mode, dispatch_batches = dispatch_batches, split_batches = split_batches, include_tokens_per_second = include_tokens_per_second, include_num_input_tokens_seen = include_num_input_tokens_seen, neftune_noise_alpha = neftune_noise_alpha, optim_target_modules = optim_target_modules, batch_eval_metrics = batch_eval_metrics, eval_on_start = eval_on_start, use_liger_kernel = use_liger_kernel, eval_use_gather_object = eval_use_gather_object, average_tokens_across_devices = average_tokens_across_devices, dataset_num_proc = dataset_num_proc, num_mini_batches = num_mini_batches, total_episodes = total_episodes, local_rollout_forward_batch_size = local_rollout_forward_batch_size, num_sample_generations = num_sample_generations, response_length = response_length, stop_token = stop_token, stop_token_id = stop_token_id, temperature = temperature, missing_eos_penalty = missing_eos_penalty, sft_model_path = sft_model_path, world_size = world_size, num_total_batches = num_total_batches, micro_batch_size = micro_batch_size, local_batch_size = local_batch_size, batch_size = batch_size, local_mini_batch_size = local_mini_batch_size, mini_batch_size = mini_batch_size, exp_name = exp_name, reward_model_path = reward_model_path, model_adapter_name = model_adapter_name, ref_adapter_name = ref_adapter_name, num_ppo_epochs = num_ppo_epochs, whiten_rewards = whiten_rewards, kl_coef = kl_coef, cliprange = cliprange, vf_coef = vf_coef, cliprange_value = cliprange_value, gamma = gamma, lam = lam, ds3_gather_for_generation = ds3_gather_for_generation,**kwargs) self.vllm_sampling_params = vllm_sampling_params self.unsloth_num_chunks = unsloth_num_chunks pass class _UnslothPPOTrainer(Trainer): _tag_names = ["trl", "ppo"] def __init__( self, args: PPOConfig, processing_class: Optional[ Union[PreTrainedTokenizerBase, BaseImageProcessor, FeatureExtractionMixin, ProcessorMixin] ], model: nn.Module, ref_model: Optional[nn.Module], reward_model: nn.Module, train_dataset: Dataset, value_model: Optional[nn.Module] = None, data_collator: Optional[DataCollatorWithPadding] = None, eval_dataset: Optional[Union[Dataset, dict[str, Dataset]]] = None, # less commonly used optimizers: tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None), callbacks: Optional[list[TrainerCallback]] = None, peft_config: Optional["PeftConfig"] = None, ) -> None: if ref_model is model: raise ValueError( "`model` and `ref_model` cannot be the same object. If you want `ref_model` to be the " "same as `model`, you must make a copy of it, or `None` if you use peft." ) self.args = args self.processing_class = processing_class self.policy_model = model # Define the collator if not provided if data_collator is None: data_collator = DataCollatorWithPadding(self.processing_class) # Handle stop token settings: update policy model's generation_config to use provided stop token if args.stop_token and args.stop_token_id: raise ValueError("You cannot set both `stop_token` and `stop_token_id`.") elif args.stop_token: if args.stop_token == "eos": self.policy_model.generation_config.eos_token_id = self.stop_token_id = processing_class.eos_token_id else: raise ValueError( f"Unknown `stop_token` {args.stop_token}. Allowed values are: `'eos'` and `None` (no stop token)." ) else: self.policy_model.generation_config.eos_token_id = self.stop_token_id = args.stop_token_id # None or int # peft support if not is_peft_available() and peft_config is not None: raise ImportError( "PEFT is not installed and you passed a `peft_config` in the trainer's kwargs, please install it to use the PEFT models" ) elif is_peft_available() and peft_config is not None: # if model is a peft model and we have a peft_confg, we merge and unload it first if isinstance(self.policy_model, PeftModel): self.policy_model = self.policy_model.merge_and_unload() # get peft model with the given config self.policy_model = get_peft_model(self.policy_model, peft_config) if args.bf16 and getattr(self.policy_model, "is_loaded_in_4bit", False): peft_module_casting_to_bf16(self.policy_model) self.is_peft_model = is_peft_available() and isinstance(self.policy_model, PeftModel) self.model_adapter_name = args.model_adapter_name self.ref_adapter_name = args.ref_adapter_name if ref_model: self.ref_model = ref_model elif self.is_peft_model: self.ref_model = None else: self.ref_model = create_reference_model(self.policy_model) self.reward_model = reward_model self.train_dataset = train_dataset self.train_dataset_len = len(train_dataset) self.value_model = value_model self.data_collator = data_collator self.eval_dataset = eval_dataset self.optimizer, self.lr_scheduler = optimizers self.optimizer_cls_and_kwargs = None # needed for transformers >= 4.47 ######### # calculate various batch sizes ######### if args.total_episodes is None: # allow the users to define episodes in terms of epochs. args.total_episodes = int(args.num_train_epochs * self.train_dataset_len) accelerator = Accelerator(gradient_accumulation_steps=args.gradient_accumulation_steps) self.accelerator = accelerator args.world_size = accelerator.num_processes args.local_batch_size = ( args.per_device_train_batch_size * args.gradient_accumulation_steps * args.num_mini_batches ) args.micro_batch_size = int(args.per_device_train_batch_size * args.world_size) args.batch_size = int(args.local_batch_size * args.world_size) args.mini_batch_size = exact_div( args.batch_size, args.num_mini_batches, "`batch_size` must be a multiple of `num_mini_batches`" ) args.local_mini_batch_size = exact_div( args.local_batch_size, args.num_mini_batches, "`local_batch_size` must be a multiple of `num_mini_batches`" ) if args.whiten_rewards: assert ( args.local_mini_batch_size >= 8 ), f"Per-rank minibatch size {args.local_mini_batch_size} is insufficient for whitening" # `per_rank_rollout_batch_size` is our `args.local_batch_size` # `per_rank_minibatch_size` is our `args.local_mini_batch_size` args.num_total_batches = math.ceil( args.total_episodes / args.batch_size ) # we may train for more than `total_episodes` time_tensor = torch.tensor(int(time.time()), device=accelerator.device) time_int = broadcast(time_tensor, 0).item() # avoid different timestamps across processes args.run_name = f"{args.exp_name}__{args.seed}__{time_int}" self.local_seed = args.seed + accelerator.process_index * 100003 # Prime if args.num_sample_generations > 0: self.sample_generations_freq = max(1, args.num_total_batches // args.num_sample_generations) self.local_dataloader_batch_size = args.local_batch_size ######### # setup model, optimizer, and others ######### for module in [self.policy_model, self.ref_model, self.value_model, self.reward_model]: if module is not None: disable_dropout_in_model(module) self.model = PolicyAndValueWrapper(self.policy_model, self.value_model) self.model.config = self.policy_model.config # needed for pushing to hub self.create_optimizer_and_scheduler( num_training_steps=args.num_total_batches ) # note that we are calling `self.lr_scheduler.step()` manually only at the batch level ######### ### trainer specifics ######### default_callbacks = DEFAULT_CALLBACKS + get_reporting_integration_callbacks(self.args.report_to) self.callbacks = default_callbacks if callbacks is None else default_callbacks + callbacks self.callback_handler = CallbackHandler( self.callbacks, self.model, self.processing_class, self.optimizer, self.lr_scheduler ) self.add_callback(PrinterCallback if self.args.disable_tqdm else DEFAULT_PROGRESS_CALLBACK) self.control = TrainerControl() self.state = OnlineTrainerState( is_local_process_zero=self.is_local_process_zero(), is_world_process_zero=self.is_world_process_zero(), stateful_callbacks=[ cb for cb in self.callback_handler.callbacks + [self.control] if isinstance(cb, ExportableState) ], ) self.current_flos = 0 self.hp_search_backend = None self.is_deepspeed_enabled = getattr(self.accelerator.state, "deepspeed_plugin", None) is not None self.is_fsdp_enabled = getattr(self.accelerator.state, "fsdp_plugin", None) is not None # Create distant repo and output directory if needed self.hub_model_id = None if self.args.push_to_hub: self.init_hf_repo() if self.args.should_save: os.makedirs(self.args.output_dir, exist_ok=True) # Add tags for models that have been loaded with the correct transformers version if hasattr(self.model, "add_model_tags"): self.model.add_model_tags(self._tag_names) ######### ### setup dataloader ######### self.dataloader = DataLoader( self.train_dataset, batch_size=self.local_dataloader_batch_size, shuffle=True, collate_fn=self.data_collator, drop_last=True, # needed; otherwise the last batch will be of ragged shape ) # sync random states for DataLoader(shuffle=True) before `accelerator.prepare` # see https://gist.github.com/vwxyzjn/2581bff1e48e185e0b85b6dfe1def79c torch.manual_seed(args.seed) self.model, self.optimizer, self.dataloader = accelerator.prepare(self.model, self.optimizer, self.dataloader) torch.manual_seed(self.local_seed) # reset the local seed again self.eval_dataloader = DataLoader( self.eval_dataset, batch_size=args.per_device_eval_batch_size, collate_fn=self.data_collator, drop_last=True, ) # no need to shuffle eval dataset self.eval_dataloader = accelerator.prepare(self.eval_dataloader) if self.is_deepspeed_enabled: self.reward_model = prepare_deepspeed( self.reward_model, args.per_device_train_batch_size, args.fp16, args.bf16 ) if self.ref_model is None: if not self.is_peft_model: raise ValueError("No reference model and model is not a Peft model.") else: self.ref_model = prepare_deepspeed( self.ref_model, args.per_device_train_batch_size, args.fp16, args.bf16 ) else: if self.ref_model is None: if not self.is_peft_model: raise ValueError("No reference model and model is not a Peft model.") else: self.ref_model = self.ref_model.to(self.accelerator.device) self.reward_model = self.reward_model.to(self.accelerator.device) def get_train_dataloader(self) -> DataLoader: return self.dataloader def get_eval_dataloader(self) -> DataLoader: return self.eval_dataloader @contextmanager def null_ref_context(self): """Context manager for handling null reference model (that is, peft adapter manipulation).""" with ( self.accelerator.unwrap_model(self.model.policy).disable_adapter() if self.is_peft_model and not self.ref_adapter_name else nullcontext() ): if self.ref_adapter_name: self.model.policy.set_adapter(self.ref_adapter_name) yield if self.ref_adapter_name: self.model.policy.set_adapter(self.model_adapter_name or "default") def save_model(self, output_dir: Optional[str] = None, _internal_call: bool = False): backup_model = self.model self.model = self.model.policy # save only the policy if self.is_deepspeed_enabled: backup_deepspeed = self.deepspeed self.deepspeed = self.model super().save_model(output_dir, _internal_call) self.model = backup_model if self.is_deepspeed_enabled: self.deepspeed = backup_deepspeed def train(self): args = self.args accelerator = self.accelerator optimizer = self.optimizer model = self.model ref_policy = self.ref_model reward_model = self.reward_model processing_class = self.processing_class dataloader = self.dataloader device = accelerator.device def repeat_generator(): while True: yield from dataloader iter_dataloader = iter(repeat_generator()) generation_config = GenerationConfig( max_new_tokens=args.response_length, temperature=(args.temperature + 1e-7), top_k=0.0, top_p=1.0, do_sample=True, ) accelerator.print("===training policy===") start_time = time.time() stats_shape = (args.num_ppo_epochs, args.num_mini_batches, args.gradient_accumulation_steps) approxkl_stats = torch.zeros(stats_shape, device=device) pg_clipfrac_stats = torch.zeros(stats_shape, device=device) pg_loss_stats = torch.zeros(stats_shape, device=device) vf_loss_stats = torch.zeros(stats_shape, device=device) vf_clipfrac_stats = torch.zeros(stats_shape, device=device) entropy_stats = torch.zeros(stats_shape, device=device) ratio_stats = torch.zeros(stats_shape, device=device) model.train() # trainer state initialization self.state.global_step = 0 self.state.episode = 0 self.state.max_steps = args.num_total_batches * args.num_mini_batches self.state.num_train_epochs = args.total_episodes / self.train_dataset_len # Compute absolute values for logging, eval, and save if given as ratio if args.logging_steps is not None: if args.logging_steps < 1: self.state.logging_steps = math.ceil(self.state.max_steps * args.logging_steps) else: self.state.logging_steps = args.logging_steps if args.eval_steps is not None: if args.eval_steps < 1: self.state.eval_steps = math.ceil(self.state.max_steps * args.eval_steps) else: self.state.eval_steps = args.eval_steps if args.save_steps is not None: if args.save_steps < 1: self.state.save_steps = math.ceil(self.state.max_steps * args.save_steps) else: self.state.save_steps = args.save_steps self.control = self.callback_handler.on_train_begin(args, self.state, self.control) # backward compatibility if self.is_deepspeed_enabled: self.deepspeed = self.model self.model_wrapped = self.model for update in range(1, args.num_total_batches + 1): self.state.episode += 1 * args.batch_size data = next(iter_dataloader) with torch.no_grad(): queries = data["input_ids"].to(device) context_length = queries.shape[1] responses = [] postprocessed_responses = [] logprobs = [] ref_logprobs = [] scores = [] sequence_lengths = [] values = [] with unwrap_model_for_generation( self.model, self.accelerator, gather_deepspeed3_params=self.args.ds3_gather_for_generation ) as unwrapped_model: query_responses, logitss = batch_generation( unwrapped_model.policy, queries, args.local_rollout_forward_batch_size, processing_class.pad_token_id, generation_config, ) for i in range(0, queries.shape[0], args.local_rollout_forward_batch_size): query = queries[i : i + args.local_rollout_forward_batch_size] query_response = query_responses[i : i + args.local_rollout_forward_batch_size] response = query_response[:, context_length:] logits = logitss[i : i + args.local_rollout_forward_batch_size] logprob = selective_log_softmax(logits, response) del logits torch.cuda.empty_cache() if ref_policy is None: with self.null_ref_context(): ref_output = forward(model.policy, query_response, processing_class.pad_token_id) else: ref_output = forward(ref_policy, query_response, processing_class.pad_token_id) ref_logits = ref_output.logits[:, context_length - 1 : -1] ref_logits /= args.temperature + 1e-7 ref_logprob = selective_log_softmax(ref_logits, response) del ref_output, ref_logits torch.cuda.empty_cache() # Response Processing 1. truncate response after the first occurrence of `stop_token_id` postprocessed_response = response if self.stop_token_id is not None: # handle the edge case when stop_token_id exists but is 0 postprocessed_response = truncate_response( self.stop_token_id, processing_class.pad_token_id, response ) # Response Processing 2. run reward model on the truncated responses postprocessed_query_response = torch.cat((query, postprocessed_response), 1) sequence_length = first_true_indices(postprocessed_response == processing_class.pad_token_id) - 1 unwrapped_value_model = accelerator.unwrap_model(model).value_model full_value, _, _ = get_reward( unwrapped_value_model, query_response, processing_class.pad_token_id, context_length ) value = full_value[:, context_length - 1 : -1].squeeze(-1) _, score, _ = get_reward( reward_model, postprocessed_query_response, processing_class.pad_token_id, context_length ) responses.append(response) postprocessed_responses.append(postprocessed_response) logprobs.append(logprob) ref_logprobs.append(ref_logprob) sequence_lengths.append(sequence_length) scores.append(score) values.append(value) responses = torch.cat(responses, 0) postprocessed_responses = torch.cat(postprocessed_responses, 0) logprobs = torch.cat(logprobs, 0) ref_logprobs = torch.cat(ref_logprobs, 0) sequence_lengths = torch.cat(sequence_lengths, 0) scores = torch.cat(scores, 0) values = torch.cat(values, 0) del (logprob, ref_logprob, full_value, value, score, unwrapped_model) torch.cuda.empty_cache() gc.collect() # Response Processing 3. Filter completion. Ensure that the sample contains stop_token_id # Completions not passing that filter will receive a lower score. contain_eos_token = torch.any(postprocessed_responses == self.processing_class.eos_token_id, dim=-1) if self.args.missing_eos_penalty is not None: scores[~contain_eos_token] -= self.args.missing_eos_penalty # accelerator.print(f"{scores=}, {(contain_eos_token.sum() / len(contain_eos_token))=}") # be very careful with `padding_mask_p1`; see https://excalidraw.com/#json=LWnzG4w2k5DjF_EOL_xPt,e2w3a-hFJ_gX5vOfeyXGTw response_idxs = torch.arange(responses.shape[1], device=responses.device).repeat(responses.shape[0], 1) padding_mask = response_idxs > sequence_lengths.unsqueeze(1) logprobs = torch.masked_fill(logprobs, padding_mask, INVALID_LOGPROB) ref_logprobs = torch.masked_fill(ref_logprobs, padding_mask, INVALID_LOGPROB) sequence_lengths_p1 = sequence_lengths + 1 padding_mask_p1 = response_idxs > (sequence_lengths_p1.unsqueeze(1)) values = torch.masked_fill(values, padding_mask_p1, 0) # 4. compute rewards kl = logprobs - ref_logprobs non_score_reward = -args.kl_coef * kl rewards = non_score_reward.clone() actual_start = torch.arange(rewards.size(0), device=rewards.device) actual_end = torch.where(sequence_lengths_p1 < rewards.size(1), sequence_lengths_p1, sequence_lengths) rewards[[actual_start, actual_end]] += scores # 5. whiten rewards if args.whiten_rewards: rewards = masked_whiten(rewards, mask=~padding_mask_p1, shift_mean=False) rewards = torch.masked_fill(rewards, padding_mask_p1, 0) # 6. compute advantages and returns lastgaelam = 0 advantages_reversed = [] gen_length = responses.shape[1] for t in reversed(range(gen_length)): nextvalues = values[:, t + 1] if t < gen_length - 1 else 0.0 delta = rewards[:, t] + args.gamma * nextvalues - values[:, t] lastgaelam = delta + args.gamma * args.lam * lastgaelam advantages_reversed.append(lastgaelam) advantages = torch.stack(advantages_reversed[::-1], axis=1) returns = advantages + values advantages = masked_whiten(advantages, ~padding_mask) advantages = torch.masked_fill(advantages, padding_mask, 0) torch.cuda.empty_cache() # Do multiple epochs of PPO training, with a fresh random shuffle in each epoch for ppo_epoch_idx in range(args.num_ppo_epochs): b_inds = np.random.permutation(args.local_batch_size) minibatch_idx = 0 for mini_batch_start in range(0, args.local_batch_size, args.local_mini_batch_size): mini_batch_end = mini_batch_start + args.local_mini_batch_size mini_batch_inds = b_inds[mini_batch_start:mini_batch_end] gradient_accumulation_idx = 0 for micro_batch_start in range(0, args.local_mini_batch_size, args.per_device_train_batch_size): with accelerator.accumulate(model): micro_batch_end = micro_batch_start + args.per_device_train_batch_size micro_batch_inds = mini_batch_inds[micro_batch_start:micro_batch_end] mb_advantage = advantages[micro_batch_inds] mb_responses = responses[micro_batch_inds] mb_query_responses = query_responses[micro_batch_inds] mb_logprobs = logprobs[micro_batch_inds] mb_return = returns[micro_batch_inds] mb_values = values[micro_batch_inds] output, vpred_temp = forward(model, mb_query_responses, processing_class.pad_token_id) logits = output.logits[:, context_length - 1 : -1] logits /= args.temperature + 1e-7 new_logprobs = selective_log_softmax(logits, mb_responses) new_logprobs = torch.masked_fill( new_logprobs, padding_mask[micro_batch_inds], INVALID_LOGPROB ) vpred = vpred_temp[:, context_length - 1 : -1].squeeze(-1) vpred = torch.masked_fill(vpred, padding_mask_p1[micro_batch_inds], 0) vpredclipped = torch.clamp( vpred, mb_values - args.cliprange_value, mb_values + args.cliprange_value, ) vf_losses1 = torch.square(vpred - mb_return) vf_losses2 = torch.square(vpredclipped - mb_return) vf_loss_max = torch.max(vf_losses1, vf_losses2) vf_loss = 0.5 * masked_mean(vf_loss_max, ~padding_mask_p1[micro_batch_inds]) vf_clipfrac = masked_mean( (vf_losses2 > vf_losses1).float(), ~padding_mask_p1[micro_batch_inds] ) logprobs_diff = new_logprobs - mb_logprobs ratio = torch.exp(logprobs_diff) pg_losses = -mb_advantage * ratio pg_losses2 = -mb_advantage * torch.clamp(ratio, 1.0 - args.cliprange, 1.0 + args.cliprange) pg_loss_max = torch.max(pg_losses, pg_losses2) pg_loss = masked_mean(pg_loss_max, ~padding_mask[micro_batch_inds]) loss = pg_loss + args.vf_coef * vf_loss accelerator.backward(loss) optimizer.step() optimizer.zero_grad() with torch.no_grad(): pg_clipfrac = masked_mean( (pg_losses2 > pg_losses).float(), ~padding_mask[micro_batch_inds] ) prob_dist = torch.nn.functional.softmax(logits, dim=-1) entropy = torch.logsumexp(logits, dim=-1) - torch.sum(prob_dist * logits, dim=-1) approxkl = 0.5 * (logprobs_diff**2).mean() approxkl_stats[ppo_epoch_idx, minibatch_idx, gradient_accumulation_idx] = approxkl pg_clipfrac_stats[ppo_epoch_idx, minibatch_idx, gradient_accumulation_idx] = ( pg_clipfrac ) pg_loss_stats[ppo_epoch_idx, minibatch_idx, gradient_accumulation_idx] = pg_loss vf_loss_stats[ppo_epoch_idx, minibatch_idx, gradient_accumulation_idx] = vf_loss vf_clipfrac_stats[ppo_epoch_idx, minibatch_idx, gradient_accumulation_idx] = ( vf_clipfrac ) entropy_stats[ppo_epoch_idx, minibatch_idx, gradient_accumulation_idx] = entropy.mean() ratio_stats[ppo_epoch_idx, minibatch_idx, gradient_accumulation_idx] = ratio.mean() gradient_accumulation_idx += 1 minibatch_idx += 1 # del everything and empty cache # fmt: off del ( output, vpred_temp, logits, new_logprobs, vpred, vpredclipped, vf_losses1, vf_losses2, vf_loss, vf_clipfrac, logprobs_diff, ratio, pg_losses, pg_losses2, pg_loss_max, pg_loss, loss, pg_clipfrac, prob_dist, entropy, approxkl, mb_return, mb_advantage, mb_values, mb_responses, mb_query_responses, mb_logprobs, ) # fmt: on torch.cuda.empty_cache() with torch.no_grad(): mean_kl = kl.sum(1).mean() mean_entropy = (-logprobs).sum(1).mean() mean_non_score_reward = non_score_reward.sum(1).mean() rlhf_reward = mean_non_score_reward + scores.mean() eps = int(self.state.episode / (time.time() - start_time)) metrics = {} metrics["eps"] = eps metrics["objective/kl"] = self.accelerator.gather_for_metrics(mean_kl).mean().item() metrics["objective/entropy"] = self.accelerator.gather_for_metrics(mean_entropy).mean().item() metrics["objective/non_score_reward"] = ( self.accelerator.gather_for_metrics(mean_non_score_reward).mean().item() ) metrics["objective/rlhf_reward"] = self.accelerator.gather_for_metrics(rlhf_reward).mean().item() metrics["objective/scores"] = self.accelerator.gather_for_metrics(scores.mean()).mean().item() metrics["policy/approxkl_avg"] = self.accelerator.gather_for_metrics(approxkl_stats).mean().item() metrics["policy/clipfrac_avg"] = self.accelerator.gather_for_metrics(pg_clipfrac_stats).mean().item() metrics["loss/policy_avg"] = self.accelerator.gather_for_metrics(pg_loss_stats).mean().item() metrics["loss/value_avg"] = self.accelerator.gather_for_metrics(vf_loss_stats).mean().item() metrics["val/clipfrac_avg"] = self.accelerator.gather_for_metrics(vf_clipfrac_stats).mean().item() metrics["policy/entropy_avg"] = self.accelerator.gather_for_metrics(entropy_stats).mean().item() metrics["val/ratio"] = self.accelerator.gather_for_metrics(ratio_stats).mean().item() metrics["val/ratio_var"] = self.accelerator.gather_for_metrics(ratio_stats).var().item() metrics["val/num_eos_tokens"] = (responses == processing_class.eos_token_id).sum().item() metrics["lr"] = self.lr_scheduler.get_last_lr()[0] metrics["episode"] = self.state.episode self.state.epoch = self.state.episode / self.train_dataset_len # used by self.log self.state.global_step += 1 self.log(metrics) self.lr_scheduler.step() self.control = self.callback_handler.on_step_end(args, self.state, self.control) if self.control.should_save: self._save_checkpoint(model, trial=None) self.control = self.callback_handler.on_save(self.args, self.state, self.control) del kl, mean_kl, mean_entropy, mean_non_score_reward, scores, metrics, non_score_reward torch.cuda.empty_cache() gc.collect() if args.num_sample_generations > 0 and (update - 1) % self.sample_generations_freq == 0: self.generate_completions(sampling=True) torch.cuda.empty_cache() del ( query_responses, responses, postprocessed_responses, logprobs, ref_logprobs, values, sequence_lengths, contain_eos_token, sequence_lengths_p1, response_idxs, padding_mask, padding_mask_p1, rewards, actual_start, actual_end, advantages, returns, ) torch.cuda.empty_cache() # HF trainer specifics self.control = self.callback_handler.on_train_end(args, self.state, self.control) if self.control.should_save: self._save_checkpoint(model, trial=None, metrics=None) self.control = self.callback_handler.on_save(self.args, self.state, self.control) def generate_completions(self, sampling: bool = False): args = self.args processing_class = self.processing_class generation_config = GenerationConfig( max_new_tokens=self.args.response_length, temperature=(0.01 + 1e-7), top_k=0.0, top_p=1.0, do_sample=True, ) table = defaultdict(list) with unwrap_model_for_generation( self.model, self.accelerator, gather_deepspeed3_params=self.args.ds3_gather_for_generation ) as unwrapped_model: for batch in self.eval_dataloader: query = batch["input_ids"] with torch.no_grad(): context_length = query.shape[1] query_response, _ = batch_generation( unwrapped_model.policy, query, query.shape[0], processing_class.pad_token_id, generation_config, ) response = query_response[:, context_length:] postprocessed_response = response if self.stop_token_id is not None: # handle the edge case when stop_token_id exists but is 0 postprocessed_response = truncate_response( self.stop_token_id, processing_class.pad_token_id, response ) table["query"].extend( gather_object(processing_class.batch_decode(query, skip_special_tokens=True)) ) table["model response"].extend( gather_object(processing_class.batch_decode(postprocessed_response)) ) postprocessed_query_response = torch.cat((query, postprocessed_response), 1) _, score, _ = get_reward( self.reward_model, postprocessed_query_response, processing_class.pad_token_id, context_length ) table["score"].extend(self.accelerator.gather_for_metrics(score).float().cpu().numpy()) if sampling: break df = pd.DataFrame(table) if self.accelerator.is_main_process: print_rich_table(df.iloc[0 : 0 + 5]) if "wandb" in args.report_to: import wandb if wandb.run is not None: wandb.log({"completions": wandb.Table(dataframe=df)}) if "comet_ml" in args.report_to: log_table_to_comet_experiment( name="completions.csv", table=df, ) def create_model_card( self, model_name: Optional[str] = None, dataset_name: Optional[str] = None, tags: Union[str, list[str], None] = None, ): """ Creates a draft of a model card using the information available to the `Trainer`. Args: model_name (`str` or `None`, *optional*, defaults to `None`): Name of the model. dataset_name (`str` or `None`, *optional*, defaults to `None`): Name of the dataset used for training. tags (`str`, `list[str]` or `None`, *optional*, defaults to `None`): Tags to be associated with the model card. """ if not self.is_world_process_zero(): return if hasattr(self.model.config, "_name_or_path") and not os.path.isdir(self.model.config._name_or_path): base_model = self.model.config._name_or_path else: base_model = None tags = tags or [] if isinstance(tags, str): tags = [tags] if hasattr(self.model.config, "unsloth_version"): tags.append("unsloth") citation = textwrap.dedent("""\ @article{mziegler2019fine-tuning, title = {{Fine-Tuning Language Models from Human Preferences}}, author = {Daniel M. Ziegler and Nisan Stiennon and Jeffrey Wu and Tom B. Brown and Alec Radford and Dario Amodei and Paul F. Christiano and Geoffrey Irving}, year = 2019, eprint = {arXiv:1909.08593} }""") model_card = generate_model_card( base_model=base_model, model_name=model_name, hub_model_id=self.hub_model_id, dataset_name=dataset_name, tags=tags, wandb_url=wandb.run.get_url() if is_wandb_available() and wandb.run is not None else None, comet_url=get_comet_experiment_url(), trainer_name="PPO", trainer_citation=citation, paper_title="Fine-Tuning Language Models from Human Preferences", paper_id="1909.08593", ) model_card.save(os.path.join(self.args.output_dir, "README.md")) class UnslothPPOTrainer(_UnslothPPOTrainer): """ """ def __init__( self, args, processing_class, model, ref_model, reward_model, train_dataset, value_model = None, data_collator = None, eval_dataset = None, callbacks = None, peft_config = None, **kwargs ): if args is None: args = UnslothPPOConfig() use_bf16 = getattr(args, 'bf16', False) use_fp16 = getattr(args, 'fp16', False) force_float32 = False if os.environ.get('UNSLOTH_FORCE_FLOAT32', '0') == '1': print('Unsloth: Switching to float32 training since model cannot work with float16') force_float32 = True mixed_precision_dtype = os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32') dtype = getattr(model.config, 'torch_dtype', None) if dtype is None: dtype = model.get_input_embeddings().dtype from unsloth_zoo.utils import _get_dtype dtype = _get_dtype(dtype) float16 = dtype == torch.float16 if not force_float32 and (float16 and use_bf16): raise TypeError('Unsloth: Model is in float16 precision but you want to use bfloat16 precision. Set fp16 to `True` and bf16 to `False`') if not force_float32 and (not float16 and use_fp16): raise TypeError('Unsloth: Model is in bfloat16 precision but you want to use float16 precision. Set fp16 to `False` and bf16 to `True`') if force_float32: args.fp16 = False args.bf16 = False os.environ['ACCELERATE_MIXED_PRECISION'] = 'no' elif (not use_bf16 and not use_fp16) and mixed_precision_dtype == 'float32': args.fp16 = float16 args.bf16 = not float16 os.environ['ACCELERATE_MIXED_PRECISION'] = 'fp16' if float16 else 'bf16' if getattr(args, 'eval_dataset', None) is not None and getattr(args, 'eval_strategy', 'no') == 'no': args.eval_strategy = 'steps' if getattr(args, 'eval_steps', None) is None: args.eval_steps = 0.1 ga_steps = getattr(args, 'gradient_accumulation_steps', None) if ga_steps is not None and ga_steps > 1: from transformers import __version__ as transformers_version if Version(transformers_version) <= Version('4.45.2'): print('**** Unsloth: Please use our fixed gradient_accumulation_steps by updating transformers, TRL and Unsloth!\n' '`pip install --upgrade --no-cache-dir --force-reinstall --no-deps unsloth transformers trl unsloth_zoo`') if getattr(args, 'eval_strategy', 'no') != 'no': eval_bsz = getattr(args, 'per_device_eval_batch_size', 8) if eval_bsz == 8 and args.per_device_train_batch_size < eval_bsz: args.per_device_eval_batch_size = args.per_device_train_batch_size if getattr(args, 'eval_accumulation_steps', None) is None and ga_steps is not None: args.eval_accumulation_steps = ga_steps fp16_full_eval = getattr(args, 'fp16_full_eval', False) bf16_full_eval = getattr(args, 'bf16_full_eval', False) if args.fp16 and bf16_full_eval: args.bf16_full_eval = False; args.fp16_full_eval = True if args.bf16 and fp16_full_eval: args.bf16_full_eval = True; args.fp16_full_eval = False if force_float32: args.bf16_full_eval = False args.fp16_full_eval = False elif os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32') == 'bfloat16': args.bf16_full_eval = True args.fp16_full_eval = False elif not bf16_full_eval and not fp16_full_eval: args.bf16_full_eval = args.bf16 args.fp16_full_eval = args.fp16 _output_logits = False if locals().get('compute_metrics', None) is not None: _output_logits = True if locals().get('preprocess_logits_for_metrics', None) is not None: _output_logits = True if _output_logits: os.environ['UNSLOTH_RETURN_LOGITS'] = '1' if 'max_seq_length' not in locals() and not hasattr(args, 'max_seq_length'): pass else: model_max_seq_length = getattr(model, 'max_seq_length', None) args_max_seq_length = getattr(args, 'max_seq_length', None) if args_max_seq_length is None and model_max_seq_length is not None: max_seq_length = model.max_seq_length if hasattr(args, 'max_seq_length'): args.max_seq_length = max_seq_length if model is not None and hasattr(model, 'for_training'): model.for_training() if 'tokenizer' in locals() and hasattr(tokenizer, 'padding_side'): tokenizer.padding_side = 'right' if 'processing_class' in locals(): if hasattr(processing_class, 'padding_side'): processing_class.padding_side = 'right' if hasattr(processing_class, 'tokenizer') and hasattr(processing_class.tokenizer, 'padding_side'): processing_class.tokenizer.padding_side = 'right' __tokenizer = processing_class if 'processing_class' in locals() else tokenizer from unsloth_zoo.vision_utils import UnslothVisionDataCollator if not isinstance(data_collator, UnslothVisionDataCollator): if isinstance(data_collator, DataCollatorForSeq2Seq) and 'labels' not in train_dataset.column_names: data_collator = DataCollatorForLanguageModeling(__tokenizer, mlm = False) elif isinstance(data_collator, DataCollatorForLanguageModeling) and 'labels' in train_dataset.column_names: data_collator = DataCollatorForSeq2Seq(__tokenizer) else: if hasattr(args, 'remove_unused_columns'): args.remove_unused_columns = False if hasattr(args, 'dataset_text_field'): args.dataset_text_field = '' if hasattr(args, 'dataset_kwargs'): args.dataset_kwargs = {'skip_prepare_dataset': True} if not isinstance(data_collator, UnslothVisionDataCollator): if not hasattr(__tokenizer, 'pad') and hasattr(__tokenizer, 'tokenizer'): if isinstance(data_collator, DataCollatorForSeq2Seq): data_collator = DataCollatorForSeq2Seq(__tokenizer.tokenizer) else: data_collator = DataCollatorForLanguageModeling(__tokenizer.tokenizer, mlm = False) other_metrics = [] from unsloth_zoo.logging_utils import PatchRLStatistics PatchRLStatistics('ppo_trainer', other_metrics) super().__init__( args = args, processing_class = processing_class, model = model, ref_model = ref_model, reward_model = reward_model, train_dataset = train_dataset, value_model = value_model, data_collator = data_collator, eval_dataset = eval_dataset, callbacks = callbacks, peft_config = peft_config,**kwargs) if hasattr(self, 'neftune_hook_handle'): self.neftune_hook_handle.remove() if hasattr(self, 'neftune_hook_handle'): del self.neftune_hook_handle if getattr(args, 'neftune_noise_alpha', None) is not None: model.get_input_embeddings().neftune_noise_alpha = self.neftune_noise_alpha pass pass