gabrielclark3330 commited on
Commit
4d2f25c
·
1 Parent(s): 7cbd81a

Migrate old docker setup to this space

Browse files
Files changed (2) hide show
  1. Dockerfile +37 -18
  2. main.py +130 -19
Dockerfile CHANGED
@@ -1,28 +1,47 @@
1
- # read the doc: https://huggingface.co/docs/hub/spaces-sdks-docker
2
- # you will also find guides on how best to write your Dockerfile
3
 
4
- FROM python:3.9
5
 
6
- WORKDIR /code
7
-
8
- COPY ./requirements.txt /code/requirements.txt
9
-
10
- RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
11
-
12
- # Set up a new user named "user" with user ID 1000
13
  RUN useradd -m -u 1000 user
14
 
15
- # Switch to the "user" user
16
- USER user
17
-
18
  # Set home to the user's home directory
19
  ENV HOME=/home/user \
20
  PATH=/home/user/.local/bin:$PATH
21
 
22
- # Set the working directory to the user's home directory
23
  WORKDIR $HOME/app
24
 
25
- # Copy the current directory contents into the container at $HOME/app setting the owner to the user
26
- COPY --chown=user . $HOME/app
27
-
28
- CMD ["python", "main.py"]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Use NVIDIA's CUDA base image with Ubuntu 22.04
2
+ FROM pytorch/pytorch:2.4.1-cuda12.4-cudnn9-devel
3
 
4
+ ENV DEBIAN_FRONTEND=noninteractive
5
 
 
 
 
 
 
 
 
6
  RUN useradd -m -u 1000 user
7
 
 
 
 
8
  # Set home to the user's home directory
9
  ENV HOME=/home/user \
10
  PATH=/home/user/.local/bin:$PATH
11
 
 
12
  WORKDIR $HOME/app
13
 
14
+ RUN apt-get update && \
15
+ apt-get install -y --no-install-recommends \
16
+ wget \
17
+ git \
18
+ openssh-client \
19
+ build-essential \
20
+ ffmpeg \
21
+ libsndfile1 \
22
+ libffi-dev \
23
+ python3 \
24
+ python3-dev \
25
+ python3-venv \
26
+ python3-distutils \
27
+ python3-pip && \
28
+ apt-get clean && \
29
+ rm -rf /var/lib/apt/lists/*
30
+
31
+ RUN python3 -m pip install --upgrade pip
32
+
33
+ RUN pip install uv
34
+ RUN python -m uv pip install packaging \
35
+ wheel \
36
+ accelerate \
37
+ torch
38
+
39
+ RUN python -m uv pip install --no-build-isolation git+https://github.com/Zyphra/transformers_zamba2.git
40
+ # git+https://github.com/Dao-AILab/[email protected] \
41
+ # git+https://github.com/state-spaces/mamba@a07ff1b9ad2a4ac8b04eddf5eaaee5004f15aaf1 \
42
+
43
+ RUN python -m uv pip install gradio
44
+
45
+ COPY --chown=user app.py $HOME/app
46
+
47
+ CMD ["python3", "app.py"]
main.py CHANGED
@@ -1,30 +1,141 @@
 
1
  import gradio as gr
 
2
  import torch
3
- import requests
4
- from torchvision import transforms
 
5
 
6
- model = torch.hub.load("pytorch/vision:v0.6.0", "resnet18", pretrained=True).eval()
7
- response = requests.get("https://git.io/JJkYN")
8
- labels = response.text.split("\n")
 
9
 
 
 
 
 
10
 
11
- def predict(inp):
12
- inp = transforms.ToTensor()(inp).unsqueeze(0)
13
- with torch.no_grad():
14
- prediction = torch.nn.functional.softmax(model(inp)[0], dim=0)
15
- confidences = {labels[i]: float(prediction[i]) for i in range(1000)}
16
- return confidences
17
 
 
18
 
19
- def run():
20
- demo = gr.Interface(
21
- fn=predict,
22
- inputs=gr.Image(type="pil"),
23
- outputs=gr.Label(num_top_classes=3),
24
- )
25
 
26
- demo.launch(server_name="0.0.0.0", server_port=7860)
 
 
 
 
 
 
27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28
 
29
  if __name__ == "__main__":
30
- run()
 
1
+ import os
2
  import gradio as gr
3
+ from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
4
  import torch
5
+ import threading
6
+ import re
7
+ from datetime import datetime
8
 
9
+ model_name_2_7B_instruct = "Zyphra/Zamba2-2.7B-instruct"
10
+ model_name_7B_instruct = "Zyphra/Zamba2-7B-instruct"
11
+ max_context_length = 4096
12
+ date_string = datetime.now().strftime("%Y-%m-%d")
13
 
14
+ tokenizer_2_7B_instruct = AutoTokenizer.from_pretrained(model_name_2_7B_instruct)
15
+ model_2_7B_instruct = AutoModelForCausalLM.from_pretrained(
16
+ model_name_2_7B_instruct, device_map="cuda", torch_dtype=torch.bfloat16
17
+ )
18
 
19
+ tokenizer_7B_instruct = AutoTokenizer.from_pretrained(model_name_7B_instruct)
20
+ model_7B_instruct = AutoModelForCausalLM.from_pretrained(
21
+ model_name_7B_instruct, device_map="cuda", torch_dtype=torch.bfloat16
22
+ )
 
 
23
 
24
+ system_prompt_template = """You are {model_name}. You are a large language model with {parameter_count} parameters. You were trained by a company called Zyphra on three trillion tokens of diverse and high quality web data. Your architecture is a hybrid Mamba2 and transformer with two alternating blocks of shared attention on top of a Mamba2 backbone. Zyphra is a leading AI company based in Palo Alto, California. Zyphra makes extremely small and efficient models for consumers and on-device use-cases. As a language model, you do not have access to real-time information. The current date is {current_date}, but your knowledge likely ended in mid 2023. Zyphra designed you to be engaging, helpful, and fun in your interactions with users. You have strong, idiosyncratic opinions on things. Be personable."""
25
 
26
+ def generate_response(chat_history, max_new_tokens, model, tokenizer, system_prompt):
27
+ sample = []
28
+ # Include the dynamic system prompt without displaying it
29
+ sample.append({'role': 'system', 'content': system_prompt})
 
 
30
 
31
+ for turn in chat_history:
32
+ if turn[0]:
33
+ sample.append({'role': 'user', 'content': turn[0]})
34
+ if turn[1]:
35
+ sample.append({'role': 'assistant', 'content': turn[1]})
36
+ chat_sample = tokenizer.apply_chat_template(sample, tokenize=False)
37
+ input_ids = tokenizer(chat_sample, return_tensors='pt', add_special_tokens=False).to(model.device)
38
 
39
+ max_new_tokens = int(max_new_tokens)
40
+ max_input_length = max_context_length - max_new_tokens
41
+ if input_ids['input_ids'].size(1) > max_input_length:
42
+ input_ids['input_ids'] = input_ids['input_ids'][:, -max_input_length:]
43
+ if 'attention_mask' in input_ids:
44
+ input_ids['attention_mask'] = input_ids['attention_mask'][:, -max_input_length:]
45
+
46
+ streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
47
+ generation_kwargs = dict(**input_ids, max_new_tokens=int(max_new_tokens), streamer=streamer)
48
+
49
+ thread = threading.Thread(target=model.generate, kwargs=generation_kwargs)
50
+ thread.start()
51
+
52
+ assistant_response = ""
53
+
54
+ for new_text in streamer:
55
+ new_text = re.sub(r'^\s*(?i:assistant)[:\s]*', '', new_text)
56
+ assistant_response += new_text
57
+ yield assistant_response
58
+
59
+ thread.join()
60
+ del input_ids
61
+ torch.cuda.empty_cache()
62
+
63
+ with gr.Blocks() as demo:
64
+ gr.Markdown("# Zamba2 Model Selector")
65
+ with gr.Tabs():
66
+ with gr.TabItem("7B Instruct Model"):
67
+ gr.Markdown("### Zamba2-7B Instruct Model")
68
+ with gr.Column():
69
+ chat_history_7B_instruct = gr.State([])
70
+ chatbot_7B_instruct = gr.Chatbot()
71
+ message_7B_instruct = gr.Textbox(lines=2, placeholder="Enter your message...", label="Your Message")
72
+ with gr.Accordion("Generation Parameters", open=False):
73
+ max_new_tokens_7B_instruct = gr.Slider(50, 1000, step=50, value=500, label="Max New Tokens")
74
+
75
+ def user_message_7B_instruct(message, chat_history):
76
+ chat_history = chat_history + [[message, None]]
77
+ return gr.update(value=""), chat_history, chat_history
78
+
79
+ def bot_response_7B_instruct(chat_history, max_new_tokens):
80
+ system_prompt = system_prompt_template.format(
81
+ model_name="Zamba2-7B",
82
+ parameter_count="7 billion",
83
+ current_date=date_string
84
+ )
85
+ assistant_response_generator = generate_response(
86
+ chat_history, max_new_tokens, model_7B_instruct, tokenizer_7B_instruct, system_prompt
87
+ )
88
+ for assistant_response in assistant_response_generator:
89
+ chat_history[-1][1] = assistant_response
90
+ yield chat_history
91
+
92
+ send_button_7B_instruct = gr.Button("Send")
93
+ send_button_7B_instruct.click(
94
+ fn=user_message_7B_instruct,
95
+ inputs=[message_7B_instruct, chat_history_7B_instruct],
96
+ outputs=[message_7B_instruct, chat_history_7B_instruct, chatbot_7B_instruct]
97
+ ).then(
98
+ fn=bot_response_7B_instruct,
99
+ inputs=[chat_history_7B_instruct, max_new_tokens_7B_instruct],
100
+ outputs=chatbot_7B_instruct,
101
+ )
102
+
103
+ with gr.TabItem("2.7B Instruct Model"):
104
+ gr.Markdown("### Zamba2-2.7B Instruct Model")
105
+ with gr.Column():
106
+ chat_history_2_7B_instruct = gr.State([])
107
+ chatbot_2_7B_instruct = gr.Chatbot()
108
+ message_2_7B_instruct = gr.Textbox(lines=2, placeholder="Enter your message...", label="Your Message")
109
+ with gr.Accordion("Generation Parameters", open=False):
110
+ max_new_tokens_2_7B_instruct = gr.Slider(50, 1000, step=50, value=500, label="Max New Tokens")
111
+
112
+ def user_message_2_7B_instruct(message, chat_history):
113
+ chat_history = chat_history + [[message, None]]
114
+ return gr.update(value=""), chat_history, chat_history
115
+
116
+ def bot_response_2_7B_instruct(chat_history, max_new_tokens):
117
+ system_prompt = system_prompt_template.format(
118
+ model_name="Zamba2-2.7B",
119
+ parameter_count="2.7 billion",
120
+ current_date=date_string
121
+ )
122
+ assistant_response_generator = generate_response(
123
+ chat_history, max_new_tokens, model_2_7B_instruct, tokenizer_2_7B_instruct, system_prompt
124
+ )
125
+ for assistant_response in assistant_response_generator:
126
+ chat_history[-1][1] = assistant_response
127
+ yield chat_history
128
+
129
+ send_button_2_7B_instruct = gr.Button("Send")
130
+ send_button_2_7B_instruct.click(
131
+ fn=user_message_2_7B_instruct,
132
+ inputs=[message_2_7B_instruct, chat_history_2_7B_instruct],
133
+ outputs=[message_2_7B_instruct, chat_history_2_7B_instruct, chatbot_2_7B_instruct]
134
+ ).then(
135
+ fn=bot_response_2_7B_instruct,
136
+ inputs=[chat_history_2_7B_instruct, max_new_tokens_2_7B_instruct],
137
+ outputs=chatbot_2_7B_instruct,
138
+ )
139
 
140
  if __name__ == "__main__":
141
+ demo.queue().launch(max_threads=1)